Supplementary Information

Three-Dimensional Porous MoNi₄ Networks Constructed by Nanosheets as Bifunctional Electrocatalysts for Overall Water Splitting

Yanshuo Jin^a, Xin Yue^a, Chang Shu^a, Shangli Huang^b, Pei Kang Shen^{a,b,*}

^aState Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China

^bCollaborative Innovation Center of Sustainable Energy Materials, Guangxi University, Nanning 530004, P. R. China

*E-mail: stsspk@mail.sysu.edu.cn

Catalyst (mass loading)	Electrolyte	HER Potential vs. RHE (V) @ 10 mA cm ⁻²	OER Potential vs. RHE (V) @ 10 mA cm ⁻²	Overall Water Splitting Potential (V) @ 10 mA cm ⁻²	Overall Water Splitting Onset Potential (V)
porous MoNi ₄ networks (~1.09 mg/cm ²)	1 М КОН	-0.028	1.51	1.58	1.45 ^{this} work
NiCo ₂ O ₄ hollow microcuboids ^[1] (~1 mg/cm ²)	1 М КОН	-0.110	1.52	1.65	
NiSe nanowire film/Ni foam ^[2] (2.8 mg/cm ²)	1 М КОН	-0.096		1.63	~1.5
$\frac{\text{Ni}_{5}\text{P}_{4} \text{ Films/Ni}}{\text{foil}^{[3]}}$ (~3.5 mg/cm ²)	1 М КОН	-0.15	1.56	<1.7	~1.53
Ni ₂ P nanoparticles ^[4] (0.14 mg/cm ²)	1 М КОН		1.52	1.63	~1.5
Co-P films/Cu foil ^[5] (2.71 mg/cm ²)	1 М КОН	-0.094	1.575	1.64	1.57
Porous Cobalt- Based Thin	1 М КОН	-0.38	1.53		
Film ^[6] ($\sim 0.1 \text{ mg/cm}^2$)	0.5 M H ₂ SO ₄	-0.15			
Ni ₃ S ₂ Nanosheet Arrays /Ni	1 M KOH	~-0.22	~1.49	~1.76(@~13 mA cm ⁻²)	
foam ^[7] (~1.6 mg/cm ²)	neutral media	~-0.17			

Table S1. HER, OER and overall water splitting activities of the porous MoNi₄ networks and reported catalysts.

NiFeO _x /CFP				1.55	~1.5
galvanostatic cycles ^[8]	1М КОН	-0.088	1.46	1.51 (increasing the	
(~1.6 mg/cm ²)				mass loading)	

Figure S1. SEM images of (a) nickel foam, (b) porous MoNi₄ networks annealed at 450°C at low magnification.

Figure S2. XRD patterns of nickel foam.

Figure S3. SEM images of Mo-Ni based precursors at different magnifications.

Figure S4. TEM images of Mo-Ni based precursors at different magnifications.

Figure S5. XRD patterns of the porous $MoNi_4$ networks annealed at 300°C, 450°C and 600°C.

Figure S6. Higher resolution SEM image of the porous MoNi₄ networks annealed at

450°C.

Figure S7. The corresponding energy dispersive X-ray (EDX) spectrum of porous

MoNi₄ networks annealed at 450°C.

Figure S8. SEM images of porous $MoNi_4$ networks annealed at 300°C at different

magnifications.

Figure S9. TEM images of porous MoNi₄ networks annealed at 300°C at different

magnifications.

Figure S10. SEM images of porous MoNi₄ networks annealed at 600°C at different

magnifications.

Figure S11. TEM images of porous MoNi_4 networks annealed at 600 $^\circ C$ at different

magnifications.

Figure S12. XPS spectra of the $MoNi_4$ networks annealed at different temperature. (a)

Ni 2p peaks. (b) Mo 3d peaks.

Figure S13. SEM images of porous MoNi₄ networks annealed at 450°C after the

HER stability test.

Figure S14. (a) TEM images and (b) the corresponding selected-area electron diffraction (SAED) pattern of porous $MoNi_4$ networks annealed at 450°C after the HER stability test.

Figure S15. SEM images of porous $MoNi_4$ networks annealed at 450°C after the

OER stability test.

Figure S16. (a-c) TEM images and (d) the corresponding selected-area electron diffraction (SAED) pattern of the porous $MoNi_4$ networks annealed at 450°C after the OER stability test.

Figure S17. Dissolved quantity - time curves of Mo and Ni during OER.

Figure S18. XPS spectra (Ni 2p peaks) of the $MoNi_4$ networks annealed at different temperature after OER.

Figure S19. Electrochemically surface area measurements. The

corresponding $j_{geo}\ vs$ scan rates plots of the porous MoNi_4 networks annealed at 450 °C.

Figure S20. The Nyquist plots of the porous $MoNi_4$ networks annealed at 450°C at (a) -100 mV vs. RHE and (b) 1.6 V vs. RHE. All of the potentials and voltages are without iR corrected.

References

X. Gao, H. Zhang, Q. Li, X. Yu, Z. Hong, X. Zhang, C. Liang, Z. Lin, Angew.
 Chem. Int. Ed. 55 (2016) 6290–6294.

[2] C. Tang, N. Cheng, Z. Pu, W. Xing, X. Sun, Angew.Chem. Int. Ed. 54 (2015)9351-9355.

[3] M. Ledendecker, S. K. Calderón, C. Papp, H. Steinrück, M. Antonietti, M. Shalom, Angew.Chem. Int. Ed. 127 (2015) 12538-12542.

- [4] L.-A. Stern, L. Feng, F. Song, X. Hu, Energy Environ. Sci. 8 (2015) 2347-2351.
- [5] N. Jiang, B. You, M. Sheng, Y. Sun, Angew. Chem. Int. Ed. 54 (2015) 6251-6254.
- [6] Y. Yang, H. Fei, G. Ruan, J. M. Tour, Adv. Mater. 27 (2015) 3175-3180.
- [7] L.-L. Feng, G. Yu, Y. Wu, G.-D. Li, H. Li, Y. Sun, T. Asefa, W. Chen, X. Zou, J.

Am. Chem. Soc. 137 (2015) 14023-14026.

[8] H. Wang, H. Lee, Y. Deng, Z. Lu, P. Hsu, Y. Liu, D. Lin, Y. Cui, Nat. Comm. 6 (2015) 7261.