## Suppressing Chromium Disproportion Reaction in O3-type Layered Cathode Material for High Capacity Sodium-ion Batteries

Ming-Hui Cao,<sup>a</sup> Yong Wang,<sup>c</sup> Zulipiya Shadike,<sup>a</sup> Ji-Li Yue,<sup>a</sup> Enyuan Hu,<sup>d</sup> Seong-Min Bak,<sup>d</sup> Yong-Ning Zhou\*<sup>b</sup> and Xiao-Qing Yang\*<sup>d</sup> and Zheng-Wen Fu\*<sup>a</sup>

<sup>a</sup>Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Department of Chemistry & Laser Chemistry Institute, Fudan University, Shanghai, 200433, P.R. China \*E-mail: zwfu@fudan.edu.cn
 <sup>b</sup>Department of Materials Science, Fudan University, Shanghai, 200433, P.R. China \*E-mail: zhouyongning@gmail.com
 <sup>c</sup>Shanghai Institute of Space Power-Sources, Shanghai, 200245, P.R. China.
 <sup>d</sup>Department of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, USA \*E-mail: xyang@bnl.gov

## **Electronic Supplementary Information (ESI)**



Figure S1. Electron configuration and distortion schematics of Cr<sup>3+</sup> and Cr<sup>4+</sup> in CrO<sub>6</sub> octahedral coordination. <sup>[S1]</sup>



**Figure S2.** Fourier transform X-ray absorption near-edge structure (XANES) spectra at Cr K-edges of NCFM electrodes during the initial cycle.



**Figure S3.** Fourier transform X-ray absorption near-edge structure (XANES) spectra at Fe K-edges of NCFM electrodes during the initial cycle.



**Figure S4.** Fourier transform X-ray absorption near-edge structure (XANES) spectra at Mn K-edges of NCFM electrodes during the initial cycle.

**Table S1.** Structural parameters and atomic positions of as-prepared O3-type  $NaCr_{1/3}Fe_{1/3}Mn_{1/3}O_2$  deducted from Rietveld Refinement.

| Atom  | Wyckoff        | Occupancy           | x/a    | y/b                | z/c      |
|-------|----------------|---------------------|--------|--------------------|----------|
| Na    | 3b             | 1                   | 0      | 0                  | 0.0      |
| Cr    | За             | 1/3                 | 0      | 0                  | 0.5      |
| Fe    | 3a             | 1/3                 | 0      | 0                  | 0.5      |
| Mn    | 3a             | 1/3                 | 0      | 0                  | 0.5      |
| 0     | бс             | 1                   | 0      | 0                  | 0.230065 |
| R-3m: | a = b = 2.9    | a = b = 2.9639(4) Å |        | c = 16.1693(       | 5) Å     |
|       | $R_p = 1.91\%$ | 5 R <sub>wp</sub> = | = 2.9% | $GOF(\chi^2) = 1.$ | 102      |

**Table S2.** Comparison of the electrochemical properties of O3-layered cathode materials for sodium ion batteries.

|            | Electrode materials                                                       | Voltage   | Initial Capacity | Reference |
|------------|---------------------------------------------------------------------------|-----------|------------------|-----------|
|            |                                                                           | Range (V) | (mAh/g)          |           |
| unary      | NaNiO <sub>2</sub>                                                        | 1.25-3.75 | 125(0.1C)        | S2        |
|            | NaFeO <sub>2</sub>                                                        | 1.5-3.6   | 82(0.1C)         | S3        |
|            | NaTiO <sub>2</sub>                                                        | 0.6-1.6   | 152(0.1C)        | S4        |
|            | NaCoO <sub>2</sub>                                                        | 2.0-3.8   | 116(0.1C)        | S5        |
|            | α-NaMnO <sub>2</sub>                                                      | 2.0-3.8   | 187(0.1C)        | S6        |
|            | β-NaMnO <sub>2</sub>                                                      | 2.0-4.2   | No Info.         | S7        |
|            | NaCrO <sub>2</sub>                                                        | 2.0-3.6   | 112(0.1C)        | S8        |
|            | NaCrO <sub>2</sub> /C                                                     | 2.0-3.6   | 121(0.1C)        | S8        |
| Binary     | $NaNi_{0.5}Mn_{0.5}O_2$                                                   | 2.2-3.8   | 125(0.033C)      | S9        |
|            | $NaFe_{0.5}Co_{0.5}O_2$                                                   | 2.5-4.0   | 160(0.1C)        | S10       |
|            | $NaNi_{0.5}Ti_{0.5}O_2$                                                   | 2.0-4.0   | 102(0.1C)        | S11       |
|            | $NaMn_{0.5}Fe_{0.5}O_2$                                                   | 1.5-4.2   | 135(0.01C)       | S12       |
|            | $NaFe_{0.5}Mn_{0.5}O_2$                                                   | 1.5-4.2   | 125(0.05C)       | S13       |
| Ternary    | $NaNi_{0.25}Fe_{0.5}Mn_{0.25}O_2$                                         | 2.1-3.9   | 140(0.1C)        | S14       |
|            | $NaNi_{0.33}Mn_{0.33}Co_{0.33}O_2$                                        | 2.0-3.75  | 120(0.1C)        | S15       |
|            | $NaNi_{0.33}Fe_{0.33}Mn_{0.33}O_2$                                        | 2.0-4.0   | 125(0.1C)        | S16       |
|            | $NaNi_{0.4} Fe_{0.2}Mn_{0.4}O_2$                                          | 2.0-4.0   | 131(0.1C)        | S17       |
|            |                                                                           |           |                  |           |
|            | $NaNi_{0.33}Co_{0.33}Fe_{0.33}O_2$                                        | 2.0-4.2   | 165(0.1C)        | S18       |
|            | $NaFe_{0.2}Ni_{0.4}Ti_{0.4}O_2$                                           | 2.6-3.75  | 120(0.1C)        | S19       |
|            | $NaFe_{0.2}(Ni_{1/2}Ti_{1/2})_{0.6}O_2$                                   | 2.0-3.8   | 130(0.05C)       | S20       |
|            | NaFe <sub>0.33</sub> Cr <sub>0.33</sub> Mn <sub>0.33</sub> O <sub>2</sub> | 1.5-4.2   | 186(0.05C)       | This work |
| Quaternary | $NaNi_{0.25}Fe_{0.25}Co_{0.25}Mn_{0.25}O_{2}$                             | 1.9-4.3   | 183(0.1C)        | S21       |
|            | $NaNi_{0.4}Fe_{0.2}Mn_{0.25}Ti_{0.2}O_2$                                  | 2.0-4.2   | 145(0.1C)        | S22       |
| Quinary    | $NaNi_{0.25}Fe_{0.25}Co_{0.25}Mn_{0.125}Ti_{0.125}O_2$                    | 2.0-4.1   | 128(0.1C)        | S23       |

| Samples                          | Path                   | r/Å                  | σ² /10 <sup>-3</sup> Ų      | <i>∆E</i> /eV      | R         |
|----------------------------------|------------------------|----------------------|-----------------------------|--------------------|-----------|
|                                  |                        |                      |                             |                    |           |
| pristine                         | Cr-O                   | 1.99(1)±0.013        | $0.10 \pm 2.10$             | 0.95 ± 1.78        | 0.011     |
|                                  | Cr-TM                  | 2.95(9)±0.014        | 1.10 ± 1.77                 |                    |           |
| half charged                     | Cr-O                   | 1.95(6) ± 0.017      | 2.20 ± 2.84                 | -1.36 ± 2.32       | 0.018     |
|                                  | Cr-TM                  | 2.92(7) ± 0.018      | 2.84 ± 2.33                 |                    |           |
| fully charged                    | Cr-O                   | 1.97(3) ± 0.029      | 3.13 ± 1.86                 | -2.67 ± 2.18       | 0.005     |
|                                  | Cr-TM                  | 2.93(3) ± 0.037      | 4.26 ± 1.47                 |                    |           |
| half discharged                  | Cr-O                   | 1.97(8) ± 0.016      | 0.14 ± 2.66                 | -1.19 ± 2.41       | 0.019     |
|                                  | Cr-TM                  | 2.94(6) ± 0.019      | 2.33 ± 2.44                 |                    |           |
| fully discharged                 | Cr-O                   | 1.98(3) ± 0.016      | 0.37 ± 2.41                 | 0.55 ± 2.30        | 0.002     |
|                                  | Cr-TM                  | 2.95(9) ± 0.018      | 2.64 ± 2.36                 |                    |           |
| <i>r</i> : bond length; $\sigma$ | <sup>2</sup> : Debye-W | aller factor (disord | er); <i>∆E</i> :inner shell | potential shift;R: | R-factor. |

**Tables S3.** Structure parameters from nonlinear least-squares fits to the first two peaks of the Fourier transform at the Cr K-edge EXAFS of NCFM electrode at different states.

| Samples          | Path                                                                                                                        | r/Å             | σ² /10 <sup>-3</sup> Ų | <i>∆E</i> /eV | R     |
|------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------|------------------------|---------------|-------|
| pristine         | Mn-O                                                                                                                        | 1.90(8)±0.008   | 2.55±1.25              | -4.38±1.20    | 0.006 |
|                  | Mn-TM                                                                                                                       | 2.94(9)±0.009   | 3.90 ±1.05             |               |       |
| half charged     | Mn-O                                                                                                                        | 1.90(2) ± 0.010 | 2.78±1.59              | -4.74±1.51    | 0.010 |
|                  | Mn-TM                                                                                                                       | 2.93(2) ± 0.011 | 4.10±1.34              |               |       |
| fully charged    | Mn-O                                                                                                                        | 1.89(4) ± 0.014 | 7.79 ± 1.84            | -5.09 ± 1.80  | 0.013 |
|                  | Mn-TM                                                                                                                       | 2.91(9) ± 0.011 | 3.75 ± 2.55            |               |       |
| half discharged  | Mn-O                                                                                                                        | 1.90(2) ± 0.009 | 2.88 ± 1.48            | -4.82 ± 1.44  | 0.009 |
|                  | Mn-TM                                                                                                                       | 2.93(8) ± 0.011 | 5.07 ± 1.32            |               |       |
| fully discharged | Mn-O                                                                                                                        | 1.91(2) ± 0.009 | 2.25 ± 1.53            | -3.57 ± 1.52  | 0.010 |
|                  | Mn-TM                                                                                                                       | 2.95(7) ± 0.012 | 4.92 ± 1.41            |               |       |
| r: bond length;  | <i>r</i> : bond length; $\sigma^2$ : Debye-Waller factor (disorder); $\Delta E$ :inner shell potential shift; <i>R</i> : R- |                 |                        |               |       |
| factor.          |                                                                                                                             |                 |                        |               |       |

**Table S4.** Structure parameters from nonlinear least-squares fits to the first two peaks of the Fourier transform at the Fe K-edge EXAFS of NCFM electrode at different states.

| Samples          | Path                                                                                                | r/Å             | σ² /10 <sup>-3</sup> Ų | <i>∆E</i> /eV | R     |
|------------------|-----------------------------------------------------------------------------------------------------|-----------------|------------------------|---------------|-------|
| pristine         | Fe-O                                                                                                | 2.03(1)±0.006   | 4.72±0.90              | -0.83±0.61    | 0.002 |
|                  | Fe-TM                                                                                               | 2.98(2)±0.005   | 4.21 ±0.65             |               |       |
| half charged     | Fe-O                                                                                                | 2.01(4) ± 0.005 | 6.58±0.85              | -1.23±0.55    | 0.002 |
|                  | Fe-TM                                                                                               | 2.96(8) ± 0.005 | 6.62±0.64              |               |       |
| fully charged    | Fe-O                                                                                                | 1.96(6) ± 0.014 | 8.43±2.40              | -1.40±1.73    | 0.013 |
|                  | Fe-TM                                                                                               | 2.98(0) ± 0.020 | 14.01±2.55             |               |       |
| half discharged  | Fe-O                                                                                                | 2.00(0) ± 0.007 | 7.20±1.19              | -1.34±0.79    | 0.003 |
|                  | Fe-TM                                                                                               | 2.98(4) ± 0.008 | 8.54 ±0.97             |               |       |
| fully discharged | Fe-O                                                                                                | 2.01(5) ± 0.006 | 6.32±1.09              | -0.95±0.73    | 0.003 |
|                  | Fe-TM                                                                                               | 2.99(5) ± 0.007 | 7.08±0.86              |               |       |
| r: bond length;  | $\sigma^2$ : Debye-Waller factor (disorder); $\Delta E$ :inner shell potential shift; <i>R</i> : R- |                 |                        |               |       |
| factor.          |                                                                                                     |                 |                        |               |       |

**Table S5.** Structure parameters from nonlinear least-squares fits to the first two peaks of the Fourier transform at the Mn K-edge EXAFS of NCFM electrode at different states.

| ions                 | Ζ*               | r/Å                               | Xi    |
|----------------------|------------------|-----------------------------------|-------|
| <br>Fe <sup>3+</sup> | 4.95             | 1.24                              | 1.9   |
| Cr <sup>4+</sup>     | 5.5              | 1.85                              | 3.917 |
| Mn <sup>4+</sup>     | 5.65             | 1.79                              | 4.09  |
| Z*:effective nuclear | <i>r</i> :atomic | X <sub>i</sub> :electronegativity |       |
| <br>number           | radium;          |                                   |       |
|                      |                  |                                   |       |

Tables S6. Electronegativity parameters of ions in NCFM. [S24]

 $x_{Fe}^{3+} < x_{Cr}^{4+} < x_{Mn}^{4+}$ Electronic Configuration of lons:1s<sup>2</sup>2s<sup>2</sup>2p<sup>6</sup>3s<sup>2</sup>3p<sup>6</sup>3d<sup>y</sup>4s<sup>0</sup> Correlation Formula:  $Z^{*} = Z - [0 \times 0.35 + (8+y) \times 0.85 + 10 \times 1.0]$  $3.59 \times 103 \times Z^{*} (pm)2$  $x_{i} = \frac{r^{2}}{r^{2}} + 0.744$ 

## References

[S1] T.P. Zhang., Journal of Higher Correspondence Education (Natural Sciences). 2003, 16,31.

[S2] X. H. Ma, H. L. Chen and G. Ceder, J. Electrochem. Soc. 2011, 158, A1307.

[S3] N. Yabuuchi, H. Yoshida and S. Komaba, *Electrochemistry* 2012, **80**, 716.

[S4] D. Wu, X. Li, B. Xu, N. Twu, L. Liu and G. Ceder. *Energy Environ. Sci.* 2015, **8**, 195.

[S5] T. Shibata, Y. Fukuzumi, W. Kobayashi and Yutaka Moritomo, Sci. Rep. 2015, 5, 9006.

[S6] X. H. Ma, H. L. Chen and G. Ceder, J. Electrochem. Soc. 2011, **158**, A1307.

[S7] J. Billaud, R. J. Clement, A. R. Armstrong, J. Canales-Vazquez, P. Rozier, C. P. Grey and P. G.Bruce, *J. Am. Chem. Soc.* 2014, **136**, 17243.

[S8] C. Y. Yu, J. S. Park, H. G. Jung, K. Y. Chung, D. Aurbach, Y. K. Sun and S. T. Myung, *Energy Environ. Sci.* 2015, **8**, 2019-2026

[S9] S. Komaba, N. Yabuuchi, T. Nakayama, A. Ogata, T. Ishikawa and I. Nakai, *Inorg. Chem.* 2012, **51**,6211.

[S10] H. Yoshida, N. Yabuuchi and S. Komaba, *Electrochem. Commun.* 2013, 34, 60.

[S11] H. J. Yu, S. H. Guo, Y. B. Zhu, M. Ishida and H. S. Zhou, Chem. Commun. 2014, 50, 457.

[S12] B. Mortemard de Boisse, D. Carlier, M. Guignard and C. Delmas, J. Electrochem. Soc. 2013, **160**, A569.

[S13] N. Yabuuchi, M. Kajiyama, J. Iwatat, H. Nishikawa, S. Hitomi, R. Okuyama, R. Usui, Y. Yamada, S. Komaba, *Nat. Mater.* 2012, **11**, 512.

[S14] S. M. Oh, S. T. Myung, C. S. Yoon, J. Lu, J. Hassoun, B. Scrosati, K. Amine and Y. K. Sun, *NanoLett.* 2014, **4**, 1620.

[S15] M. Sathiya, K. Hemalatha, K. Ramesha, J.-M. Tarascon and A. S. Prakash, *Chem. Mater.*, 2012, **24**,1846.

[S16] D. Kim, E. Lee, M. Slater, W. Lu, S. Rood and C.S. Johnson, *Electrochem. Commun.* 2012, **18**, 66.

[S17] D. D. Yuan, Y. X. Wang, Y. L. Cao, X. P. Ai and H. X. Yang, *ACS Appl. Mater. Interfaces*, 2015, **7**, 8585.

[S18] P. Vassilaras, A. J. Toumar and G. Ceder, *Electrochem. Commun.* 2014, 38, 79.

[S19] G. Singh, F. Aguesse, L. Otaegui, E. Goikolea, E. Gonzalo, J Segalini and T. Rojo. *J. Power Sources* 2015, **273**, 333.

[S20] N. Yabuuchi, M.Yano, H.Yoshida, S.Kuze and S.Komaba, J. Electrochem. Soc. 2013, **160**, A3131.

[S21] X. Li, D. Wu, Y. N. Zhou, L. Liu, X. Q. Yang and G. Ceder, *Electrochem. Commun.* 2014, **49**, 51.

[S22] X. Sun, Y. Jin, C. Y. Zhang, J. W. Wen, Y. Shao, Y. Zang and C. H. Chen, *J. Mater. Chem. A* 2014, **2**, 17268.

[S23] J. L. Yue, W. W. Yin, M. H. Cao, S. Zulipiya, Y. N. Zhou and Z.W. Fu, *Chem.Comm.* 2015 **51**, 15712.

[S24] X. H. Yuan, Y. Li, Guangzhou Chemical Industry 2002, **30**, 134.