Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is C The Royal Society of Chemistry

Iron Incorporation Affecting Structure and Boosting Catalytic Activity of β-Co(OH)₂: a Reaction Mechanism Exploring of Ultrathin Two-Dimensional Carbon-free Fe₃O₄-Decorated β-Co(OH)₂ Nanosheets as Efficient Oxygen Evolution Electrocatalysts

Fengzhan Sun[‡], Linbo Li[‡], Guo Wang*, and Yuqing Lin*

([‡] These authors contributed equally to this work)

Department of Chemistry, Capital Normal University, Beijing 100048, China

*E-mail: linyuqing@cnu.edu.cn; wangguo@mail.cnu.edu.cn

Fig. S1 N₂ adsorption/desorption isotherms of Fe₃O₄ NPs, Co(OH)₂ NSs, and Fe₃O₄/Co(OH)₂ NSs with different Co/Fe mole ratio (1, 3, 7, 15, and 31).

Fig. S2 Room temperature hysteresis loop of Fe_3O_4 NPs, $Co(OH)_2$ NSs, and $Fe_3O_4/Co(OH)_2$ NSs with different Co/Fe mole ratio (1, 3, 7, 15, and 31).

The hysteresis loop at room temperature of the as-prepared catalysts are shown in Fig. S2. The Fe₃O₄/Co(OH)₂ NSs and Fe₃O₄ NPs show ferromagnetism while Co(OH)₂ NSs show antiferromagnetic property. The saturation magnetization of the Fe₃O₄ nanoparticles is 78.8 emu/g. As for Fe₃O₄/Co(OH)₂ NSs, the saturation magnetizations are 75.0 emu g⁻¹ (Co/Fe 1), 120.6 emu g⁻¹ (Co/Fe 3), 133.2 emu g⁻¹ (Co/Fe 7), 146.8 emu g⁻¹ (Co/Fe 15) and 152.6 emu g⁻¹ (Co/Fe 31), which increase with the iron content decreasing.

Fig. S3 Polarization curves for OER of $Fe_3O_4/Co(OH)_2$ NSs (Co/Fe 15), Fe_3O_4 NPs, $Co(OH)_2$ NSs and the physical mixture of Fe_3O_4 and $Co(OH)_2$ by grinding.

Fig. S4 Polarization curves for OER of $Fe_3O_4/Co(OH)_2$ NSs (Co/Fe 15) obtained at different hydrothermal reaction time of 6, 12, 18, and 24 h.

Different hydrothermal reaction time were changed to study the influence of time on the electrocatalytic activity of $Fe_3O_4/Co(OH)_2$ NSs (Co/Fe 15) (Fig. S4). $Fe_3O_4/Co(OH)_2$ NSs (Co/Fe 15) at different time show little differences, with 1.643 V (6 h), 1.639 V (12 h), 1.619 V (18 h) and 1.627 V (24 h) at the current density of 10 mA cm⁻². The electrocatalytic activity change a little with different time, but for more precise, $Fe_3O_4/Co(OH)_2$ NSs (Co/Fe 15) with 18 h heating time have a better electrocatalytic performance.

Fig. S5 Polarization curves for OER of $Fe_3O_4/Co(OH)_2$ NSs (Co/Fe 15) obtained with or without H_2O_2 treatment.

Fe₃O₄/Co(OH)₂ NSs (Co/Fe 15) were treated with H₂O₂ to remove the extra hydrazine hydrate. To understand whether H₂O₂ will affect catalytic activity, Fe₃O₄/Co(OH)₂ NSs (Co/Fe 15) were examined without H₂O₂ treating for comparison. As is shown in Fig. S5, Fe₃O₄/Co(OH)₂ NSs (Co/Fe 15) afford current density of 10 mA cm⁻² in 0.39 V when the samples were treated with or without H₂O₂. It is to say that H₂O₂ will pure the samples by removing organic impurities without reducing catalytic properties.

Fig. S6 Polarization curves of $Fe_3O_4/Co(OH)_2$ (Co/Fe 15) before and after CV testing of 1000 cycles in 0.1 M KOH solution.

Fig. S7 Analysis of the HRTEM image of the Fe₃O₄ NPs, Co(OH)₂ NSs and Fe₃O₄/Co(OH)₂ NSs (Co/Fe 15) with the assistance of DigitalMicrograph software. (a)(e)(i)(n) The original HRTEM image; (b)(f)(j)(l)(o) the corresponding fast Fourier transform images; (c)(g)(k)(m)(p) the enhanced lattice fringes; and (d)(h)(q) profile of IFFT.

Fig. S8 The structure with stacking of synthesized Co(OH)₂ NSs.

Fig. S9 Crystal structure illustration of cubic Fe_3O_4 and hexagonal $Co(OH)_2$.

•

Fig. S10 XPS spectra of Fe₃O₄ NPs, Co(OH)₂ NSs and Fe₃O₄/Co(OH)₂ NSs (Co/Fe 15).

Samples	Co Atom%	Fe Atom%	Co/Fe mole ratio
Co/Fe 1	14.27	13.49	1.1
Co/Fe 3	21.12	7.45	2.8
Co/Fe 7	24.48	3.79	6.5
Co/Fe 15	26.19	1.96	13.4
Co/Fe 31	27.81	1.08	25.8

Table S1. Analysis results of as-prepared Fe₃O₄/Co(OH)₂ NSs with different Co/Fe mole ratio from EDX.

Catalyst	Overpotential (V) @10 mA cm ⁻²	Tafel slope (mV dec ⁻¹)	Electrolyte	Reference
Fe ₃ O ₄ /Co(OH) ₂ NSs (Co/Fe 15)	0.390	61.1	0.1M KOH	This work
	0.370	50.6	1M KOH	This work
Mesoporous Cu _x Co _y O ₄	0.471	/	0.1M KOH	S1
Fe-Co ₃ O ₄ nanocast	0.486	/	0.1M KOH	S2
Co-MnHCF	0.450	80.0	0.1M KOH	S3
Hollow Co ₃ O ₄ microspheres	0.400	/	0.1M KOH	S4
Co ₃ O ₄ /NPGC	0.450	/	0.1M KOH	S5
Mn ₃ O ₄ /CoSe ₂ composite	0.450	49.0	0.1M KOH	S6
Fe-mCo ₃ O ₄	0.380	60.0	0.1M KOH	S7
C0 ₃ O ₄ /G	0.402	67.0	0.1M KOH	S8
Ni–Co mixed oxide cages	0.380	50.0	1M KOH	S9
NiCo ₂ O ₄ nanowires	0.460	90.0	1М КОН	S10

 Table S2 Comparison of OER catalytic performances for well-developed Co-based

 electrocatalysts in alkaline condition

References

- (S1) T. Grewe, X. Deng, C. Weidenthaler, F. Schüth and H. Tüysüz, *Chem. Mater.*, 2013, 25, 4926-4935.
- (S2) T. Grewe, X. Deng and H. Tüysüz, Chem. Mater., 2014, 26, 3162-3168.
- (S3) N. K. A. Venugopal and J. Joseph, J. Power Sources, 2016, 305, 249-258.
- (S4) 1.J. Zhao, Y. Zou, X. Zou, T. Bai, Y. Liu, R. Gao, D. Wang and G.-D. Li, *Nanoscale*, 2014, 6, 7255-7262.
- (S5) G. Li, X. Wang, J. Fu, J. Li, M. G. Park, Y. Zhang, G. Lui and Z. Chen, *Angew. Chem.*, *Int. Ed.*, 2016, 55, 4977-4982.
- (S6) M.-R. Gao, Y.-F. Xu, J. Jiang, Y.-R. Zheng and S.-H. Yu, *J. Am. Chem. Soc.*, 2012, 134, 2930-2933.
- (S7) C. Xiao, X. Lu and C. Zhao, Chem. Commun., 2014, 50, 10122-10125.
- (S8) P. Zhang, X. Han, H. Hu, J. Gui, M. Li and J. Qiu, Catal. Commun., 2017, 88, 81-84.
- (S9) L. Han, X. Y. Yu and X. W. D. Lou, Adv. Mater., 2016, 28, 4601-4605.
- (S10) X. Yu, Z. Sun, Z. Yan, B. Xiang, X. Liu and P. Du, *J. Mater. Chem. A*, 2014, **2**, 20823-20831.