ESI to accompany:

Exploring simple ancillary ligands in copper-based dyesensitized solar cells: effects of a heteroatom switch and of co-sensitization

Frederik J. Malzner,^{*a*} Alessandro Prescimone,^{*a*} Edwin C. Constable,^{*a*} Catherine E. Housecroft^{**a*} and Markus Willgert^{*a*}

^{*a*}Department of Chemistry, University of Basel, Spitalstrasse 51, CH-4056 Basel, Switzerland; *email: <u>catherine.housecroft@unibas.ch</u>

Fig. S1. 500 MHz ¹H NMR spectrum of $[Cu(2)_2]$ [PF₆] in CD₃CN at 295K. See Scheme 1 for proton labels. * = residual CH₂Cl₂. See Fig. 1 for expansion of the aromatic region.

Fig. S2. 500 MHz ¹H NMR spectrum of $[Cu(3)_2][PF_6]$ in CD₃CN at 295K. See Scheme 1 for proton labels. See Fig. 1 for expansion of the aromatic region.

Fig. S3. Nyquist plots of DSCs containing the dyes $[Cu(5)(L)]^+$ (L = 1, 2, 3 or 4) at a light intensity of 22 mW cm⁻². The Z' and Z'' axes are plotted on the same scale.

Fig. S4. Nyquist plots of DSCs containing the dyes $[Cu(5)(L)]^+$ (L = 1, 2, 3 or 4) at a light intensity of 2.2 mW cm⁻². The Z' and Z'' axes are plotted on the same scale.

Fig S5. Nyquist plots of DSCs containing mixtures of the dyes $[Cu(5)(1)]^+$ and $[Cu(5)(3)]^+$ at a light intensity of 2.2 mW cm⁻². The Z' and Z'' axes are plotted on the same scale.

Fig S6. Nyquist plots of DSCs containing mixtures of the dyes $[Cu(5)(1)]^+$ and $[Cu(5)(3)]^+$ at a light intensity of 22 mW cm⁻². The Z' and Z'' axes are plotted on the same scale.

Dye	J _{sc} /	V _{OC} / mV	ff / %	η / %	Relative η /	IPCE max
	mA cm ⁻²				%	/ nm, %
On the day of sealing the cell (Day 0)						
[Cu(5)(1)]⁺	6.93	608	71.9	3.03	40.1	480, 53.0
[Cu(5)(1)]⁺	6.16	594	72.4	2.65	35.1	480, 48.9
[Cu(5)(2)] ⁺	6.91	531	71.4	2.62	34.7	480, 54.1
[Cu(5)(2)] ⁺	7.14	541	70.3	2.72	36.0	480, 53.6
[Cu(5)(3)] ⁺	7.76	530	69.9	2.88	38.1	480, 53.8
[Cu(5)(3)] ⁺	7.16	522	71.8	2.68	35.5	480, 53.8
[Cu(5)(4)] ⁺	6.99	558	69.5	2.71	35.9	480, 55.3
[Cu(5)(4)] ⁺	6.76	549	68.9	2.56	33.9	480, 54.9
N719	16.57	630	72.4	7.55	100	540, 71.8
3 days after sealing the cell (Day 3)						
[Cu(5)(1)]⁺	6.88	604	71.6	2.97	41.2	480, 53.1
[Cu(5)(1)]⁺	5.77	591	70.7	2.41	33.4	480, 47.7
[Cu(5)(2)] ⁺	6.19	568	69.4	2.44	33.8	470, 50.5
[Cu(5)(2)] ⁺	6.20	573	68.3	2.42	33.6	470, 45.2
[Cu(5)(3)] ⁺	6.77	542	70.4	2.58	35.8	480, 50.8
[Cu(5)(3)] ⁺	6.52	553	71.6	2.59	35.9	470, 51.2
[Cu(5)(4)] ⁺	6.38	555	70.9	2.51	34.8	480, 53.4
[Cu(5)(4)]⁺	6.02	542	69.7	2.28	31.6	480, 52.2
N719	15.03	660	72.6	7.21	100	520, 70.8
7 days after sealing the cell (Day 7)						
[Cu(5)(1)] ⁺	7.16	607	71.9	3.12	45.4	480, 54.7
[Cu(5)(1)]⁺	6.05	603	71.3	2.60	37.8	480, 49.3
[Cu(5)(2)] ⁺	6.40	579	66.7	2.47	36.0	470, 50.5
[Cu(5)(2)]⁺	6.61	584	65.9	2.54	37.0	470, 45.0
[Cu(5)(3)] ⁺	7.42	558	62.6	2.59	37.7	470, 46.2
[Cu(5)(3)] ⁺	6.67	547	70.7	2.58	37.6	470, 53.3
[Cu(5)(4)] ⁺	6.74	552	69.8	2.60	37.8	480, 54.0
[Cu(5)(4)] ⁺	6.37	546	68.7	2.39	34.8	480, 54.2
N719	14.47	650	73.0	6.87	100	540.71.1

Table S1. Performance parameters for duplicate DSCs with dyes $[Cu(5)(L)]^+$ (L = 1, 2, 3 or 4).

Table S2. Performance parameters for duplicate DSCs with co-sensitization. The FTO/TiO_2 electrodes were functionalized with anchor **5** and then immersed in the dye baths containing $[PF_6]^-$ salts of the complex cations given in the left-hand column. The active dyes in every case are $[Cu(5)(1)]^+$ or $[Cu(5)(3)]^+$:

 $FTO/TiO_2/(5) + [Cu(1)_2]^+ \rightarrow FTO/TiO_2/[(5)Cu(1)]^+$

IPCE max Relative n / Jsc / Dye-bath or baths V_{oc} / mV ff / % $\eta / \%$ mA cm⁻² / nm, % % On the day of sealing the cell (Day 0) 1:1 mixture of $[Cu(1)_2]^+$ 70.9 7.20 592 3.02 40.0 480, 56.8 and [Cu(3)2]+ 1:1 mixture of $[Cu(1)_2]^+$ 7.30 578 71.0 2.99 39.6 480, 57.1 and [Cu(3)₂]⁺ $[Cu(3)_2]^+$ followed by 6.91 588 72.8 2.96 39.2 480, 51.3 $[Cu(1)_2]^+$ $[Cu(3)_2]^+$ followed by 7.09 561 73.0 2.90 38.4 480, 51.8 $[Cu(1)_2]^+$ $[Cu(1)_2]^+$ followed by 6.35 528 72.8 2.44 32.3 460, 40.6 $[Cu(3)_2]^+$ $[Cu(1)_2]^+$ followed by 6.26 531 71.5 2.38 31.5 470, 43.1 [Cu(3)₂]⁺ N719 16.57 630 72.4 7.55 100 540, 71.8 3 days after sealing the cell (Day 3) 1:1 mixture of $[Cu(1)_2]^+$ 7.34 593 70.5 3.07 42.6 470, 56.9 and [Cu(3)2]+ 1:1 mixture of $[Cu(1)_2]^{\dagger}$ 7.04 579 70.4 2.87 39.8 470, 55.5 and [Cu(3)2]+ $[Cu(3)_2]^+$ followed by 6.18 583 72.4 2.61 36.2 470, 47.6 $[Cu(1)_2]^+$ $[Cu(3)_2]^+$ followed by 5.99 560 72.4 2.43 33.7 470, 46.5 $[Cu(1)_2]^+$ $[Cu(1)_2]^+$ followed by 5.93 519 71.6 2.20 30.5 470, 46.9 $[Cu(3)_2]^+$ $[Cu(1)_2]^+$ followed by 5.82 532 70.7 2.19 30.4 470, 44.9 $[Cu(3)_2]^+$ N719 15.03 660 72.6 7.21 100 520, 70.8 7 days after sealing the cell (Day 7) 1:1 mixture of $[Cu(1)_2]^+$ 7.30 600 70.7 3.10 45.1 470, 56.8 and [Cu(3)2]+ 1:1 mixture of $[Cu(1)_2]^{\dagger}$ 7.11 590 70.3 2.95 42.9 470, 55.9 and [Cu(3)2]+ [Cu(3)₂]⁺ followed by 6.24 586 71.9 2.63 38.3 480, 48.5 [Cu(1)₂]⁺ $[Cu(3)_2]^+$ followed by 5.99 568 2.46 35.8 480, 46.2 72.3 $[Cu(1)_2]^+$ $[Cu(1)_2]^+$ followed by 2.22 5.95 521 71.7 32.3 480, 46.4 $[Cu(3)_2]^+$ $[Cu(1)_2]^+$ followed by 70.4 5.99 525 2.21 32.2 470, 44.9 $[Cu(3)_2]^+$ N719 14.47 650 73.0 6.87 100 540, 71.1

 $FTO/TiO_2/(5) + [Cu(3)_2]^+ \rightarrow FTO/TiO_2/[(5)Cu(3)]^+$