Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Activity origin of core-shell and alloy AgCu bimetallic nanoparticles for oxygen reduction reaction

Nan Zhang ^a, Fuyi Chen*^a, Xiaoqiang Wu ^a, Qiao Wang ^a, Adnan Qaseem ^a and Zhenhai Xia*^b

^a State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xian, 710072, China.

^b Department of Materials Science and Engineering, Department of Chemistry, University of North Texas, Denton, TX 76203, USA.

^{*}Corresponding author. Tel./fax: +86029-88492052. E-mail address: fuyichen@nwpu.edu.cn (Fuyi Chen)

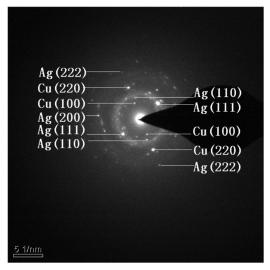


Fig. S1 Selected area diffraction patterns for AgCu nanocrystalline film.

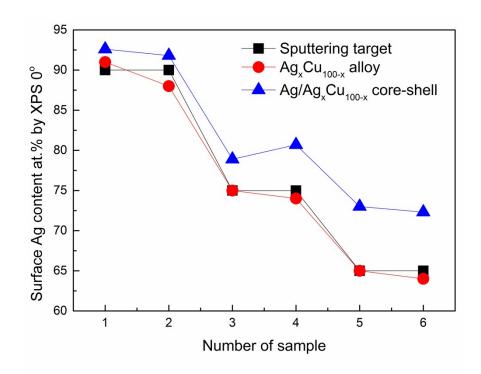


Fig. S2 Surface Ag content of Ag_xCu_{100-x} and Ag/Ag_xCu_{100-x} measured by XPS-0°.

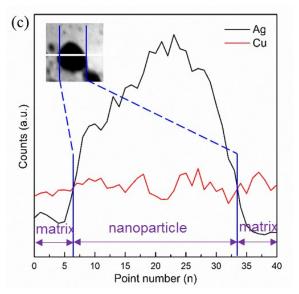


Fig. S3 STEM line-scanning of alloy $\mbox{Ag}_{3}\mbox{Cu}$ nanoparticles.

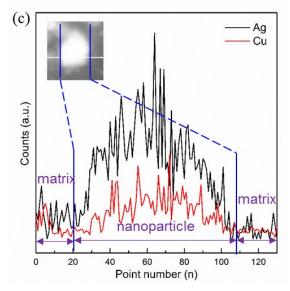


Fig. S4 STEM line-scanning of core-shell Ag/Ag₃Cu nanoparticles.