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Figure S1. Structural and tiling representation of MIL-101 displaying coexistent two types of tunnels. Two 

types of proton conducting pathways were obtained by loading HPW into one of the two kinds of cages in MIL-

101, respectively. 
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Figure S2. Zigzag and linear tunnels respectively constructed by larger and smaller cages are always arranged in 

parallel not only a) within [011], [110], [101], and [111] facets but also b) along [011], [110], and [101] facets 

orientation. 
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Figure S3. The UV–vis spectrum of HPW leaching from 3 each hour. 3 was suspended in water and the aque-

ous solution containing HPW was changed with deionized water and sampled each hour. 
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Figure S4. IR spectra of HPW (black), MIL-101 (purple), 1 (pink), 2 (light purple), and 3 (blue). 

 

 

 

Figure S5. Pore size distributions for 1-3 and MIL-101. 
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Figure S6. Nyquist plots of 1 at 100% RH and various temperatures (a) 25 °C, (b) 40 °C, (c) 50 °C, (d) 60 °C, 

(e) 70 °C, (f) 80 °C. 
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Figure S7. Nyquist plots of 2 at 100% RH and various temperatures (a) 25 °C, (b) 40 °C, (c) 50 °C, (d) 60 °C, 

(e) 70 °C, (f) 80 °C. 
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Figure S8. Nyquist plots of 3 at 100% RH and various temperatures (a) 25 °C, (b) 40 °C, (c) 50 °C, (d) 60 °C, 

(e) 70 °C, (f) 80°C. 
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Figure S9. Nyquist plot of 2’ at 80°C 100% RH. 

 

Figure S10. IR spectra of 3 (blue), EN@3 (green), DETA@3 (dark blue), TETA@3 (dark red), and TEPA@3 

(red). 
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Figure S11. PXRD patterns (left) and IR spectra (right) of 3, EN@3, and EN@3 after heating for EN elimina-

tion. 
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Figure S12. Nyquist plots of EN@3 at 100% RH and various temperatures (a) 25 °C, (b) 40 °C, (c) 50 °C, (d) 

60 °C, (e) 70 °C, (f) 80 °C. 
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Figure S13. Nyquist plots of DETA@3 at 100% RH and various temperatures (a) 25 °C, (b) 40 °C, (c) 50 °C, 

(d) 60 °C, (e) 70 °C, (f) 80 °C. 



 

S12 

 

 

 

 

Figure S14. Nyquist plots of TETA@3 at 100% RH and various temperatures (a) 25 °C, (b) 40 °C, (c) 50 °C, 

(d) 60 °C, (e) 70 °C, (f) 80 °C. 
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Figure S15. Nyquist plots of TEPA@3 at 100% RH and various temperatures (a) 25 °C, (b) 40 °C, (c) 50 °C, 

(d) 60 °C, (e) 70 °C, (f) 80 °C. 
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Figure S16. EDX spectrums for EN@3, DETA@3, and TEPA@3. 
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Figure S17. EDX spectrums for TETA@3, 4/2TETA@3, and 1/2TETA@3. 
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Figure S18. a) Schematic illustration for the preparations of TETA@3. b) The possible proton-conducting be-

haviors in TETA@3 under 100% RH (H2O has been omitted in the model for clarify).
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Figure S19. RH dependence of proton conductivity in TETA@3 at 25 °C. 

 

 

Figure S20. Time dependence of conductivity of TETA@3 at 80 °C and 100% RH. 
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Figure S21. PXRD patterns (left) and IR spectra (right) of TETA@3 before a) and after b) the impedance 

measurement. 


