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Materials and Methods 

Experimental Section I – Clusters on alumina film prepared by atomic layer deposition 

(ALD) 

Preparation of the amorphous ALD-alumina film. Amorphous alumina is chosen as support 

material because it resembles the catalyst carrier widely used in industry and it has been proven 

excellent at immobilizing nanometer and subnanometer sized clusters.
1-4

 In the present study a 3 

monolayer thick (~0.7 nm) film is prepared by atomic layer deposition (ALD) on top of the 

native oxide of a N-type (phosphorus doped) silicon wafer. 

Cluster deposition I. The ALD-alumina supported Pt10 catalyst is synthesized by soft-landing 

size-selected metal clusters from a molecular beam generated in a laser vaporizations source. The 

cluster deposition apparatus is described in detail elsewhere.
2-3, 5-6

  In brief, the molecular beam 

of platinum clusters is generated by laser evaporation of a rotating platinum rod using helium as 

carrier gas. Next, an assembly consisting of ion optics and quadrupole mass filter guide the 

positively charged Pt clusters into the deposition chamber to deposite positively charged clusters 

consisting 10-atom Pt clusters (with traces of about ~10% of 8- and 9- atom clusters) on the 

alumina support. The cluster deposition spot is about 3mm in diameter, and during deposition the 

silicon wafer is moved by a manipulator to accommodate three separate spots on the chip. The 

loading of deposited Pt is determined by online monitoring of the cluster flux on the support with 

a picoampermeter. A coverage of 0.05 atomic monolayer (ML) equivalent of Pt (1 ML 

corresponds to 1.5x10
15

 Pt atoms/cm
2
, the density of a Pt(111) surface.

7
) is applied on each spot 

to avoid possible aggregation upon landing of the clusters. After deposition, the sample is taken 

out of the chamber for further combined catalytic testing and in situ characterization by X-ray 

scattering, and X-ray absorption performed at Sector 12-ID-C at the Advanced Photon Source of 

the Argonne National Laboratory. 

Catalytic testing. Temperature programmed reactions (TPRx) are conducted within a fixed-bed, 

continuous flow reactor.
8
 The certified gas mixtures (10% CO and 10% O2, air gas) are 

configured into CO:O2:He=1:1:98 with a total flow rate of 30 sccm by using calibrated mass 

flow controllers (Brooks model SLA5850 and 0154). The pressure inside the reactor is kept 

constant at 800 Torr by automated computer control. The sample is placed on the top of the 

ceramic heater (Momentive Performance Materials Inc.) with a K-type thermocouple attached to 

the side of the heater. A temperature profile depicted in Figure 1a is programmed with a 

temperature controller (Lakeshore model 340) and a deviation less than 0.5 
o
C is achieved. The 

sample is heated with a slow heating rate of 10
o
C/min up to 300

o
C with a step of 50

o
C and is 

kept at each temperature step for 30 mins. To minimize the background and to get flat baseline 

for all interested masses, considerable care is taken during purging of the reactor, and then a 

continuous flow of helium and reactants cleans the reactor for another 4.5 hours before TPRx 

started. After TPRx, the gas is changed to 10% oxygen to monitor possible changes in the 

oxidation state of Pt upon the removal of the CO from the feed. During TPRx the reactants and 

products are monitored using a differentially pumped mass spectrometer (Pfeiffer Vacuum 

Prisma Plus QMS 220). The spectrometer is operated in multi-ion-detection mode (MID) and 
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intensity at mass to charge ratios of 28, 32 and 44 is recorded for CO, O2 and CO2 respectively. 

To quantify the reaction turn-over rate (TOR), the sensitivity of the mass spectrometer is 

calibrated by using certified gases with known concentration of the monitored reactant and 

product species. The TOR data reported here are background corrected which means that the 

CO2 signal detected over the blank alumina thin film (i.e. without Pt clusters present) is 

subtracted from the CO2 signal collected over the Pt10 sample. After background correction, the 

CO2 signal is converted into TOR based on the known Pt metal loading. The estimated 

uncertainty in the determined TOR value is around 5% or better. 

Synchrotron in situ characterization.  In-situ GIXANES and GISAXS are performed with the 

same reactor during TPRx studies. The GIXANES detected in fluorescence mode was set at Pt 

L3 edge to examine the evolution of oxidation state of Pt during CO oxidation. GIXANES data 

are collected using a four-element Vortex detector mounted perpendicular to the beam. The 

photon energy is scanned between 11.25 and 12.05 keV. The collected data are analyzed with 

IFEFFIT interactive software package (with ATHENA and ARTEMIS graphical interfaces).
9
 

The GIXANES spectra for a wide range of bulk Pt standards  are collected to perform energy 

calibration and quantification of oxidization state of the Pt catalysts. Since PtO is thermally 

unstable, we select Pt foil, (NH4)2PtCl4 and PtO2 as Pt(0), Pt(II) and Pt(IV) standards a linear 

combination fitting was performed and the results summarized in Figure 1b. The linear 

combination fitting using bulk standards provides a general trend as the function of environment 

and reaction temperature for the evolution of the composition (i.e. oxidation state) of the clusters. 

GISAXS with a geometry optimized for particles above 1nm is used to monitor possible 

sintering during heat treatment under catalytic conditions. The GISAXS data are collected on a 

platinum detector (10241024 pixels) with X-rays of 11.5 keV as a function of temperature. The 

two-dimensional GISAXS images are then cut both in horizontal and vertical directions. The 

scattering from the cluster sample is then compared with the background scattering of a blank 

support. 

 

 

Experimental Section II. – Clusters on alumina film grown on NiAl(110).  

Growth of the crystalline alumina film. The preparation of the alumina film is performed in 

ultrahigh vacuum chambers connected with each other (<1  10
−8

 Pa). The clean NiAl(110) 

surface is prepared by several cycles of Ar-ion sputtering, followed by annealing at 1300 K. The 

thin alumina film is prepared by dosing 1800 L (Langmuir: 1  10
-6

 Torr s) oxygen at 600 K 

followed by annealing at 1100 K for 5 min. The process is repeated to eliminate and close open 

metal patches in the film. 

Cluster deposition II. Pt-cluster ions are produced by a dc magnetron sputtering cluster source
.
 

Size-selected Pt10 cluster ions are deposited on Al2O3/NiAl(110) from the surface normal at 300 

K. The kinetic-energy distribution of Pt10
+
 clusters is measured by a retarding potential method 

using a metal plate at the sample position. Full width at half maximum of the energy distribution 

is 11 eV. The impact energy is tuned to 0.67 eV/atom by adjusting a bias voltage of 48 V applied 
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to the surface (soft-landing condition). The total amount of Pt deposited, determined from the 

integrated Pt10
+
 neutralization current on the sample, is 7.5  10

12
 atoms/cm

2
 in a deposition area 

with diameter ~10 mm. 

STM Characterization. STM measurements are performed at room temperature using a low-

temperature STM (LT-STM, Omicron GmbH) with a Nanonis controller (SPECS Zurich GmbH) 

and a tungsten tip. 

Treatment under reaction conditions. We perform the high-pressure gas treatment under 800 

Torr with CO and O2 seeded in He. The concentration of CO as well as O2 was 1% (i.e. partial 

pressures of 8 Torr). These conditions are identical to those to which the Pt10/ALD-alumina 

system is subjected. The high-pressure gas treatment is performed using the high-pressure 

reaction cell, which constitutes a micro batch reactor in the 800 Torr pressure range under 

practical conditions.
10

  

 

 

Theoretical Section – Computational approach 

Gas phase systems. For the DFT calculations on Pt10 clusters in the gas phase, the Quantum 

Espresso
11

 plane-wave self-consistent field code (PWscf) is used, employing the Perdew-Burke-

Ernzerhof (PBE)
12

 exchange-correlation functional and ultra-soft pseudopotentials.
13

 The 

following parameters are selected in the geometry optimizations within the global optimization 

search using the basin-hopping algorithm (see below): wave-function and charge-density cutoffs 

equal to 15 and 90 Ry, respectively, a face centered Bravais cubic cell with side length equal to 

19 Å, a Gaussian smearing of 0.02 Ry, and a convergence threshold for self-consistency equal to 

10
-6

 Ry. Geometry optimizations are performed spin restricted and using only the Gamma-point 

for the integration in the reciprocal space. In a second step, the lowest-energy structures found by 

the global search using the previous numerical parameters are re-optimized with a higher 

accuracy: wave-function/charge-density cutoffs of 40/320 Ry, respectively, smearing of 0.005 

Ry, and spin unrestricted. 

Alumina-supported systems. For the DFT calculations on Pt10 clusters supported on an alumina 

surface, calculations are also performed using the plane-wave pseudo-potential method as 

implemented in the Vienna ab initio Simulation Package (VASP)
14

, with the electron–ion 

interaction described by the full-potential all-electron projector augmented wave (PAW) 

method.
15

 As in the gas phase, spin polarized calculations are performed using PBE exchange-

correlation functional.
12

 The cut off energy for the plane wave basis set is 30 Ry. The geometries 

are considered to be converged when the forces on each atom become 0.01eV/Å or less. The 

total energy convergence is tested with respect to the plane-wave basis set size and simulation 

cell size, and the total energy is found to be accurate within 1 meV. The -Al2O3(0001) surface 

is modeled with 18-atomic layer slab by truncating the bulk  -Al2O3 structure (a=b= 4.766 Å 

and c= 12.999 Å). It should be noted that in this model hydroxyl groups on the alumina surface 

are not considered. Experimentally, hydroxyls are found at ambient conditions, but their number 

gradually decreases as the temperature is raised until they finally disappear around 500 C.
16
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Our model thus represents an alumina which, being fully dehydroxylated, realizes maximum 

adhesion of Pt clusters. Together with the results in the gas phase, this allows us to bracket the 

system’s energetics and catalytic behavior. To avoid interactions between periodic slabs, we use 

a vacuum of 13 Å between slabs. A large 3 x 3 supercell (30 atom/per unit cell) is used to avoid 

interactions between images. Overall super-cell dimensions are 14.30 x 14.30 x 25.99 Å 

containing 270 atoms. A Monkhorst–Pack set of 5 x 5 x 1 K-points is used throughout all the 

calculations. For structural relaxation, all 18 atomic layers are allowed to relax including a dipole 

correction
17

 to avoid any error due to interaction between adjacent images. 

Structural search. The search for the most stable structures for the Pt10 cluster in the gas phase is 

performed using a Basin-Hopping (BH) global search algorithm
18

 coupled with a DFT evaluation 

of energy and forces (i.e., a DF/BH algorithm).
19-20

 We deploy a total of 400 BH Monte-Carlo 

steps, random moves of 1.4 Å in the Cartesian directions of each atom, and a fictitious 

temperature kBT in the Monte-Carlo acceptance criterion of 0.4 eV. Once the most stable Pt10 

structures are identified, the adsorption of one to few CO and/or O2 molecules is investigated, 

considering each distinct adsorption site on the Pt10 cluster and including the possibility of 

adsorbing more than one CO molecule on the same site. This search provides a picture of the 

energetics of CO/O2 adsorption on 10-atom Pt clusters and – as a side-information – the number 

of CO/O2 molecules needed to reach saturation. In addition, in the case of co-adsorption of CO 

and O2, configurations corresponding to the formation of complexes containing CO2/CO3 species 

are also considered. In the end, for each composition: Pt10(O2), Pt10(CO), Pt10(CO)(O2), etc., a 

total of 5-20 different configurations are optimized and analyzed. Transition states are 

determined using the nudged elastic band (NEB) algorithm
21

 using the Broyden scheme in a two-

step approach: a first NEB on the full reaction path using 5-8 intermediate images and a 

somewhat lower accuracy (wave-function and charge density cutoffs in the range of 25/150 Ry 

to 35/280 Ry) in order to speed up this first path search, followed by a second NEB calculation 

with initial and final states close to the previously determined transition state, using 3 

intermediate images and the climbing-image procedure to refine the value of the energy barrier 

and the transition state geometry. Structural search for supported clusters is much less exhaustive 

due to the cpu-demanding character of such simulations. Configurations selected from the most 

stable in the gas phase according to previous experience are positioned on the alumina surface, 

trying to explore as diverse an epitaxy as possible, and locally minimized. NEB calculations are 

performed with using 5-8 intermediate images as in the gas phase. 
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Figure S1. Arrhenius plot and the calculated activation energy. 

 

 

 

 

 

  

 
Figure S2. Evolution of the GIXANES spectra of  Pt10 clusters (from the bottom to the top): 1) 25 

ºC He: spectrum recorded at room temperature in helium prior the inlet of the reaction mixture, 2) 

spectra recorded during the heating ramp under the mixture of CO and O2 in helium and 3) 

spectrum taken after cooling back to room temperature, under O2 in helium.  



8 

 

 

 

 

  

 

Figure S3.  Typical topographic images, histograms of apparent cluster height and histograms of 

apparent cluster aspect ratio (=apparent height/apparent diameter) of Pt10/Al2O3/NiAl(110) after 30 

minute heat-treated at each temperature under vacuum, (a) as deposited, (b) 150 °C and (c) 200 °C, 

respectively.  Note that the apparent aspect ratio can be estimated lower than the real value under 

the strongly influenced in diameter compared with height by the tip convolution effect.
22
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                (a) 

 
 

                (b) 

 
 

Figure S4. Line profiles along the black line in each STM image (3.5Vs, 100pA) of Pt10 clusters on 

Al2O3/NiAl(110) (a) as deposited, (b) after CO and O2 exposure at 27 ºC. The resolved domain 

boundary is indicated by arrow in the plot. The change in the apparent height of the clusters shows 

the transition to a multilayered Pt structure. As described in the main text, the real cluster height of 

as deposited Pt clusters can be estimated
23-24

 as ~ 0.38 + 0.33 - 0.5 = 0.21 nm (i.e. single Pt layer, 

2D structure), where 0.38 nm is the clusters’ apparent height, 0.33 nm is the alumina film’s apparent 

height, and 0.5 nm is the geometric height of the Al2O3 film estimated in  Figure S7(c). 

Consequently, the real cluster height under CO and O2 exposure can be estimated at least 1.1+0.33-

0.75= 0.68 nm, corresponding to a 2 or 3 Pt-layer structure (i.e. 3D structure), where 1.1 nm is the 

clusters’ apparent height, 0.33 nm is the alumina film’s apparent height, and 0.75 nm is the 

geometric height of the Al2O3 film estimated in  Figure S7(c). 
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Figure S5. STM images  of Pt10/Al2O3/NiAl(110) after CO and O2 gas exposure  (a) at room 

temperature and (b) 150 ºC . Note that after exposure and elevated temperature the atomic steps 

were distinguishable, thus the atomic resolution was preserved during the experiment. 
 

 

Figure S6. LEED images of (a) Al2O3/NiAl(110) and (b) Pt10/Al2O3/NiAl(110) after gas exposure. 

The energy of the primary electrons was E0 = 50 eV. 
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FigureS7. XPS spectra of Pt10/Al2O3/NiAl(110) after CO and O2 gas exposure. (a) Al2p and 

Ni3p spectra, (b) C 1s spectra, (c) Al2O3 film thickness estimated from Al
3+

 intensities.
25
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Figure S8. (a) Low-lying isomers of free Pt10: energy differences with respect to the global minimum 

are reported in eV; next to this value, the magnetic moment (in Bohr magneton units) of each isomer is 

reported. The Pt10 global minimum has a pyramidal shape, followed by a slightly rearranged pyramid 

(0.25 eV), a configuration of mixed decahedral-fcc character (0.3 eV), a bilayer arrangement (higher in 

energy by 1 eV), and other higher energy isomers including a planar structure above 2 eV. Adsorption 

energies (in eV) and spin moment of the total system (in Bohr magneton units) of (b) O2 or (c) CO 

molecules adsorbed on selected configurations of free Pt10. (d) Energy differences of selected isomers 

after quenching the magnetic moment. Plots of spin density for the global minimum and a higher-energy 

isomer of free Pt10. 
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Figure S9. Pictorial images of the structures of Pt10 systems supported on alumina, to complement Fig. 

4 of the main text: (a) bare Pt10; (b) Pt10 with O2 or two O adatoms; (c) Pt10 with CO; (e) Pt10 systems 

with co-adsorbed O2 and CO; (d,e) first step of COox (d) at low coverage on the pyramidal 

configuration and (f) at high coverage. Relative energies differences / magnetic moments are reported. 

Energy in eV, magnetic moments in Bohr magneton units. 
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Figure S10. Breaking of O2 on Pt10 starting from O2 in the gas phase and then adsorbed on a bridge site. 

Each red cross represents one NEB image. The energy barrier for O-O bond breaking is ≈0.3 eV. 

 

 

 

 

 
Figure S11. Plot of the energy as a function of time during a 4-psec Molecular Dynamics simulation at 

300 K starting from a OOCO intermediate adsorbed on gas-phase Pt10. Energies are in eV. Pt atoms are 

depicted in gray, oxygen in red and carbon in yellow. It can be noted that CO2 simply detaches from the 

clusters into the gas phase without any hint of carbonate formation. 
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Figure S12. Results of local minimizations after adding one additional CO or O2 molecule on the 

highlighted sites of the Pt10(O2)2(CO)3 cluster, showing desorption of CO or O2 molecules initially 

positioned next to the cluster sites highlighted by circles (the species relax away into the gas phase) and 

thus proving that the cluster is locally saturated. 

 

 
Figure S13. Bader charge analysis of two selected configurations: (left) Pt10(O2)2(CO)3 and (right) 

Pt10O2(CO)2(O)2 (note that in the right configuration one of the single O atoms is hidden by Pt), 

contrasting undissociated and dissociated O2. A strong charge transfer from Pt10 to O2 (and to a lesser 

extent CO) which further increases when the oxygen molecule dissociates is clearly apparent from this 

figure. 
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