Supporting Information

Solvent engineering for forming Stonehenge-like PbI₂ nanostructure

towards efficient perovskite solar cells

Yongguang Tu, Jihuai Wu¹, Xin He, Panfeng Guo, Tongyue Wu, Hui Luo, Quanzhen Liu, Kai Wang, Jianming Lin, Miaoliang Huang, Yunfang Huang, Zhang Lan, Sizhong Li

Engineering Research Center of Environment-Friendly Functional Materials for Ministry of Education, Key

Laboratory of Functional Materials for Fujian Higher Education, College of Material Science and Engineering,

Huaqiao University, Xiamen 361021, People's Republic of China

Fig. S1 ~ **Fig. S7**

Fig. S1 XRD patterns of PbI₂ films prepared by high-vacuum treatment and IPA substitution.

Fig. S2 UV–Vis absorption spectra of the PbI₂ films prepared by different approaches.

¹ Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Institute of Materials Physical chemistry, Huaqiao University, Xiamen 361021, P. R. China. Fax: (+86) 595-22692229, <u>E-mail: jhwu@hqu.edu.cn</u>.

Fig. S3 PbI₂ film photographs. Prepared by **a**, anneal treatment; **b**, IPA substitution for 60 sec.

Fig. S4 a, Top-view SEM images of CH₃NH₃PbI₃ films; b, Cross-view SEM images of CH₃NH₃PbI₃ films (red region).

Fig. S5 Photographs of CH₃NH₃PbI₃ films prepared by IPA substitution.

Fig. S6 J-V curves of the perovskite solar cell based on IPA substitution for 60 s measured by reverse (open circuit \rightarrow short circuit) and forward (short circuit \rightarrow open circuit) scans under one sun illumination.

Fig. S7 The steady-state photocurrent and output PCE of the devices at the maximum power points.

Fig. S8 Distribution of the efficiencies from for perovskite solar cell based on anneal-treatment and IPA-

60s (Each team is calculated from a batch of 50 cells).

Sample	A_1	τ_1/ns	A_2	τ_2/ns	Averaget/n
Anneal	0.68	31.26	0.32	6.20	23.24
IPA-5s	0.53	26.68	0.47	8.48	18.13
IPA-20s	0.56	14.77	0.44	4.66	10.32
IPA-60s	0.67	12.75	0.33	3.38	9.66
IPA-100s	0.47	23.36	0.53	5.31	13.79

Table S1 Fitting parameters for the time-resolved PL measurements shown in Fig. 6b.