Supporting Information

2D WS₂-Edge Functionalized Multi-Channel Carbon Nanofibers: Effect of WS₂ Edge-Abundant Structure on Room-Temperature NO₂ Sensing

Jun-Hwe Cha,[†] Seon-Jin Choi, ^{†, ‡} Sunmoon Yu,[†] and Il-Doo Kim^{†,}*

[†]Department of Materials Science and Engineering,
Korea Advanced Institute of Science and Technology,
291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
*E-mail: idkim@kaist.ac.kr

[‡]Applied Science Research Institute,

Korea Advanced Institute of Science and Technology,

291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea

S1. WS₂@CNFs

Figure S1. (a) HRTEM image of WS₂@CNFs. (b) STEM image of WS₂@CNFs on which EDS line-scan profile of W,S, N, and C is presented. (c) STEM image and STEM-EDS mapping image of WS₂@CNFs: W (red), S (sky-blue), nad C (green).

S2. TEM images of WS₂@MTCNFs and CNFs

Figure S2. (a) TEM image of $WS_2@MTCNFs$. HRTEM images of (b-c) $WS_2@MTCNFs$ and (d) CNFs. (e) Lateral dimension size distribution histogram of single layer WS_2 in MTCNFs.

S3. XRD patterns of WS₂@MTCNFs

Figure S3. XRD patterns of $WS_2@MTCNFs$ with SAN 0.450 g, SAN 0.350 g, and SAN 0.228 g and PAN-driven CNFs, respectivley.

S4. XPS spectra of the WS₂@MTCNFs : C 1s peaks

Figure S4. XPS spectra of the WS₂@MTCNFs : C 1s peaks

S5. Ex-situ XPS analysis in humid condition

Figure S5. Ex-situ XPS analysis with $WS_2@MTCNFs$: W 4f spectra (a) before and (b) after exposure to NO₂ in humid condition. S 2p spectra (c) before and (d) after exposure to NO₂ in humid condition.

S6. Sensing characteristics of CNFs and WS₂@MTCNFs

Figure S6. (a) Dynamic resistance transition characteristics of CNFs toward 5 ppm of NO₂, NH₃, and C₇H₈. (b) Dynamic resistance transition characteristics of WS₂@MTCNFs toward 5 ppm of NO₂, NH₃, and C₇H₈. (c) Dynamic response transients of CNFs, WS₂@CNFs (ATTT 0.38 g), and WS₂@CNFs (ATTT 0.7 g) toward NO₂ in the concentration range of 4-1 ppm at room temperature. (d) TEM image and HRTEM image of WS₂@CNFs (ATTT 0.7 g)

The sensing tendency of the dense CNFs and $WS_2@MTCNFs$ toward NH_3 based on resistance might be further supported by edge effects exerted by WS_2 nanoflakes distributed on the surface. During exposure to NH_3 the resistance of the dense CNFs decreases due to the electron

donating property of NH_3 molecules. According to previous studies, carbon-based gas sensors such as carbon nanotubes and graphene exhibiting n-type sensing behavior against reducing gases even though carbon nanofibers exhibit a p-type response in oxidizing gases.¹⁻² In the present study, the resistance of WS₂-edge functionalized CNFs (WS₂@MTCNFs) is increased with no recovery when NH_3 gas was injected, which is identical in sensing tendency toward NH_3 of layered MOS_2 .³⁻⁴

S7. Ex-situ XPS analysis in dry condition

Figure S7. Ex-situ XPS analysis with $WS_2@MTCNFs$: O 1s spectra (a) before and (b) after exposure to NO₂ in dry air. N 1s spectra (c) before and (d) after exposure to NO₂ in dry air.

S8. Temperature dependency of sensing characteristics of WS₂@MTCNFs

Figure S8. Dynamic response transients of WS₂@MTCNFs toward NO₂ in the concentration rage of 20-5 ppm at (a) 25 °C and (b) 80 °C.

For analysis regarding temperature dependency of the sensing materials, the sensing performance of $WS_2@MTNCFs$ was characterized at 80 °C in the concentrations of 20, 10, and 5 ppm. As a result, any enhancement in response of the $WS_2@MTNCFs$ was not observed, showing that the sensing material are not affected much by temperature.

S9. SEM images

Figure S9. SEM images of CNFs obtained from combination of PAN and SAN without ATTT, followed by heat treatment. It shows that the morphology of synthesized products is much different from that of $WS_2@MTCNFs$.

S10. Comparison with other WS₂ gas sensors

Gas species	Materials	Working temperature	Balance gas	Measurement	Response	Exposure	Detection	referenc
						time	limit	e
Various gases	Multilayer WS ₂ nanoflakes	Room temp.	Dry	Source drain current	_	~25 s	_	5
Humidity	WS ₂ Nanoparticles	Room temp.	Air	Current	_	~200 s	_	6
Methanol	Metallic 1T WS ₂	Room temp.	Humid air	Impedance	-	-	-	7
H_2	WS ₂ -Pd composite film	Room temp.	Dry N ₂	Resistance	380% at 1000 ppm	30 min	10 ppm	8
NH ₃	2nm-WS ₂ film	Room temp.	Dry N ₂	Resistance	0.2% at 60 ppm	2 min	1.2 ppm	9
NH ₃	Fluorinated 1L WS ₂	Room temp.	Dry air	PL intensity	-	2 min	-	10
NO ₂	Ag-NW@WS ₂ nanosheets	100 °C	Dry air	Current	60% at 25 ppm	5 min	-	11
NO ₂	WS ₂ @MTCNFs	Room temp.	Dry air	Resistance	15% at 1 ppm	20 min	10 ppb	This work

Table S1. Recent publications on a variety of WS₂ based gas sensors.

.

S11. Comparison with other TMD gas sensors for NO₂ sensing

Table S2. Recent publications on TMD based gas sensors toward NO₂ sensing.

Gas species	Materials	Working temperature	Balance gas	Measurement	Response	Exposure time	Detection limit	referenc e
	Thin-layered MoS ₂	Room temp.	Dry N ₂	Source drain current	1372% at 1000 ppm	~300 s	_	3
	Atomic-layer MoS ₂	Room temp.	Dry air	Resistance	27% at 20 ppm	2 min	_	4
	CVD Atomic- layer MoS ₂	Room temp.	Dry N ₂	Resistance	150% at 1200 ppb	5 min	120 ppb	12
	Graphene/MoS ₂	100 °C	Dry N ₂	Resistance	3% at 1.2 ppm	5 min	_	13
	Graphene/MoS ₂	150 °C	Dry air	Resistance	3% at 5 ppm	5 min	-	14
NO ₂	MoS ₂ /SnO ₂	Room temp.	Dry air	Conductance	0.6% at 0.5 ppm	~750 s	0.5 ppm	15
	Exfoliated MoS ₂ flakes	200 °C	Dry air	Resistance	1.6 at 1 ppm	120 min	20 ppb	16
	Vertically aligned MoS ₂	Room temp.	Dry N ₂	Resistance	4% at 100 ppm	10 min	_	17
	MoS ₂ /Graphene hybrid aerogel	200 °C	Dry N ₂	Resistance	9% at 0.5 ppm	10 min	14 ppb	18
	Ag-NW@WS2 nanosheets	100 °C	Dry air	Current	60% at 25 ppm	5 min	-	11
	WS ₂ @MTCNFs	Room temp.	Dry air	Resistance	15% at 1 ppm	20 min	10 ppb	This work

Note and References

1 W. Li, L. S. Zhang, Q. Wang, Y. Yu, Z. Chen, C. Y. Cao, W. G. Song, *J. Mater. Chem.*, 2012, **22**, 15342

2 D. N. Ventura, S. Li, C. A. Baker, C. J. Breshike, A. L. Spann, G. F. Strouse, H. W. Kroto, S. F. A. Acquah, *Carbon* 2012, **50**, 2672

3 D. J. Late, Y. K. Huang, B. Liu, J. Acharya, S. N. Shirodkar, J. J. Luo, A. M. Yan, D. Charles, U. V. Waghmare, V. P. Dravid, C. N. R. Rao, *ACS Nano* 2013, **7**, 4879

4 B. Cho, M. G. Hahm, M. Choi, J. Yoon, A. R. Kim, Y. J. Lee, S. G. Park, J. D. Kwon, C. S. Kim, M. Song, Y. Jeong, K. S. Nam, S. Lee, T. J. Yoo, C. G. Kang, B. H. Lee, H. C. Ko, P. M. Ajayan, D. H. Kim, *Sci. Rep.* 2015, **5**.

5 N. J. Huo, S. X. Yang, Z. M. Wei, S. S. Li, J. B. Xia, J. B. Li, Sci. Rep. 2014, 4.

6 A. S. Pawbake, R. G. Waykar, D. J. Late, S. R. Jadkar, ACS Appl. Mater. Inter. 2016, 8, 3359

7 C. C. Mayorga-Martinez, A. Ambrosi, A. Y. S. Eng, Z. Sofer, M. Pumera, *Adv. Funct. Mater.* 2015, **25**, 5611.

8 C. Kuru, D. Choi, A. Kargar, C. H. Liu, S. Yavuz, C. Choi, S. Jin, P. R. Bandaru, *Nanotechnology* 2016, **27**.

9 M. O'Brien, K. Lee, R. Morrish, N. C. Berner, N. McEvoy, C. A. Wolden, G. S. Duesberg, *Chem. Phys. Lett.* 2014, **615**, 6.

10 Y. I. Jhon, Y. Kim, J. Park, J. H. Kim, T. Lee, M. Seo, Y. M. Jhon, *Adv. Funct. Mater.* 2016, **26**,7541.

11 K. Y. Ko, J.-G. Song, Y. Kim, T. Choi, S. Shin, C. W. Lee, K. Lee, J. Koo, H. Lee, J. Kim, *ACS Nano* 2016, **10**, 9287.

12 B. Cho, A. R. Kim, Y. Park, J. Yoon, Y. J. Lee, S. Lee, T. J. Yoo, C. G. Kang, B. H. Lee, H. C. Ko, D. H. Kim, M. G. Hahm, *ACS Appl. Mater. Inter.* 2015, **7**, 2952.

13 B. Cho, J. Yoon, S. K. Lim, A. R. Kim, D. H. Kim, S. G. Park, J. D. Kwon, Y. J. Lee, K. H. Lee, B.
H. Lee, H. C. Ko, M. G. Hahm, *ACS Appl. Mater. Inter.* 2015, 7, 16775.

14 B. Cho, J. Yoon, S. K. Lim, A. R. Kim, S. Y. Choi, D. H. Kim, K. H. Lee, B. H. Lee, H. C. Ko, M. G. Hahm, *Sensors* 2015, **15**, 24903.

15 S. M. Cui, Z. H. Wen, X. K. Huang, J. B. Chang, J. H. Chen, *Small* 2015, 11, 2305.

16 M. Donarelli, S. Prezioso, F. Perrozzi, F. Bisti, M. Nardone, L. Giancaterini, C. Cantalini, L. Ottaviano, *Sens. Actuators, B* 2015, **207**, 602.

17 S. Y. Cho, S. J. Kim, Y. Lee, J. S. Kim, W. B. Jung, H. W. Yoo, J. Kim, H. T. Jung, *ACS Nano* 2015, **9**, 9314.

18 H. Long, A. Harley-Trochimczyk, T. Pham, Z. R. Tang, T. L. Shi, A. Zettl, C. Carraro, M. A. Worsley, R. Maboudian, *Adv. Funct. Mater.* 2016, **26**, 5158.