Supporting information

Fe (III) doped NiS₂ nanosheet: A highly efficient and low-cost hydrogen evolution catalyst

Junqing Yan^{a,*,1}, Huan Wu^{a,1}, Ping Li^{a,1}, Hui Bian^a, Hong Chen^a, Ruibin Jiang^a and Shengzhong (Frank) Liu^{a,b*}

^a Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education; Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, People's Republic of China. 1: These authors contributed equally to this work.

E-mail: junqingyan@snnu.edu.cn, liusz@snnu.edu.cn

^b iChEM, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian, 116023, P. R. China

DFT calculations

DFT calculations were performed with program package DMol in Materials Studio of Accelrys Inc. The exchange-correlation energy was treated by the Perdew-Burke-Ernzerhof (PBE) functional based on the generalized gradient approximation (GGA) [1]. In order to consider dispersion force, a semiempirical DFT-D2 method proposed by Grimme was exploited. [2] The NiS₂ (002) was cleaved from the optimized bulk Pd and PdZn alloy. The surface was modeled using a (1×1) surface unit cell with eight atomic layers, separated by 10 Å of vacuum. The Fe-doped NiS_2 (002) was constructed by replacing one Ni atom on surface with Fe atom. The reciprocal space was sampled with a $(5 \times 5 \times 1)$ k-points grid generated automatically using the Monkhorst-Pack method. [3] Fullgeometry optimization was performed for all relevant adsorbates and the uppermost three layers without symmetry restriction, while the bottom layer metal atoms were fixed at the bulk-truncated positions at the calculated lattice constants. Transition state (TS) searches were performed with the complete LST/QST method implemented in DMol. [4]

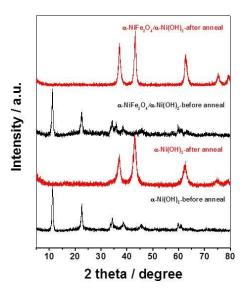


Figure S1. XRD patterns of the used precursor and the results after 400deg anneal under N_2 atmosphere without sulfur powder.

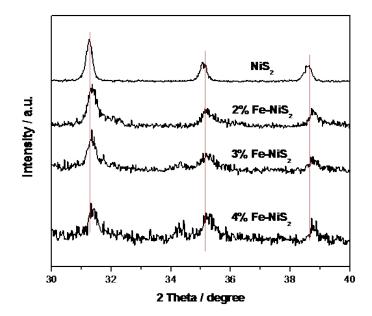


Figure S2. The magnified XRD patterns of the Fe doped and bare NiS_2 at 2 theta from 30 to 40 degree.

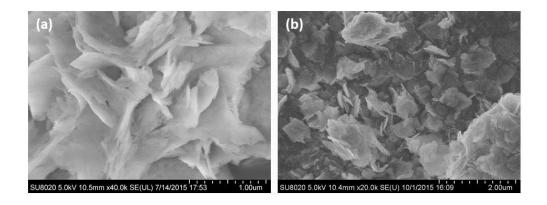


Figure S3. SEM images of the used precursor (a) $Ni(OH)_2$, (b) $NiFe_2O_4/Ni(OH)_2$.

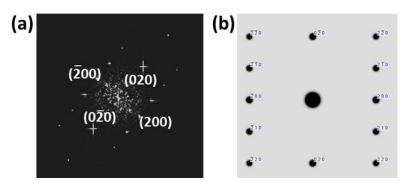
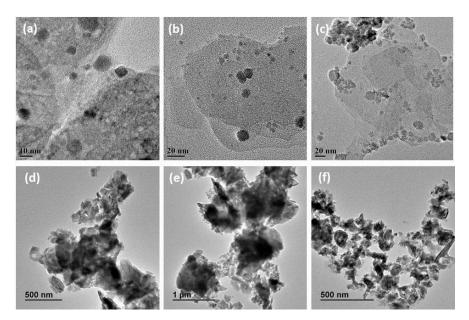



Figure S4. (a) FFT result of the HRTEM of NiS_2 in Figure 2 (g); (b) the simulated FFT result with the (020) facet.

Figure S5. (a) and (d) TEM image before and after sulfurization of sample (1), which was synthesized from 4% Fe; (b) and (e) TEM image before and after sulfurization of sample (2), which was synthesized from 3% Fe; the sulfur is 50 mg; (c) and (f) TEM image before and after sulfurization of sample (2); which was synthesized from 3% Fe.

Table S1 The full width at half maximum (FWHM) of Ni 2p XPS of NiS_2 and Fe-

11102.					
Sample	Position / eV	FWHM / eV	Position / eV	FWHM / eV	
NiS ₂	852.9	1.7	870.4	2.3	
Fe-NiS ₂	852.9	2.5	870.4	2.8	

NiS₂.

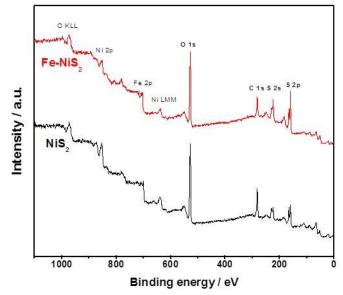


Figure S6. The wide XPS spectra of NiS_2 and Fe-NiS₂ sample.

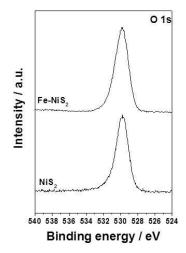


Figure S7. The O 1s XPS spectra of NiS_2 and Fe-NiS₂ sample.

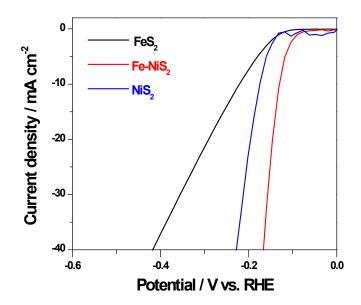
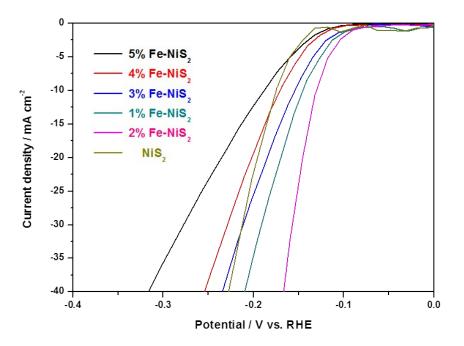



Figure S8. The HER performance of FeS_2 , NiS_2 and $Fe-NiS_2$. 0.5 M H_2SO_4 was used as the electrolyte, the scan rate was 2mv/s.

Table S2 The relative content of Fe element obtained from XPS, EDS and ICP

methods. Fe/Ni (mole ratio) / %					
Sample	XPS	TEM-EDS	ICP		
1% Fe-NiS ₂	0.98	0.99	0.99		
2% Fe-NiS ₂	2.02	2.02	1.99		
3% Fe-NiS ₂	2.98	2.99	3.02		
4% Fe-NiS ₂	3.97	4.02	3.99		
5% Fe-NiS ₂	4.97	5.00	4.98		

Figure S9. The polarization curves of the Fe-NiS₂ samples with the different Fe doping. 0.5 M H₂SO₄ was used as the electrolyte, the scan rate was 2mv/s.

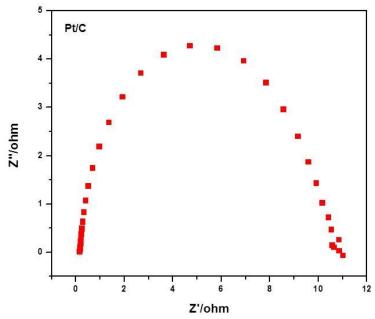
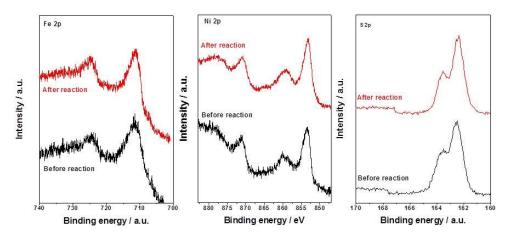



Figure S10. The electrochemical impedance spectra (EIS) of reference Pt/C electrode.

Figure S11. XPS curves of Fe 2p, Ni 2p and S 2p of the Fe-NiS₂ before and after reaction.

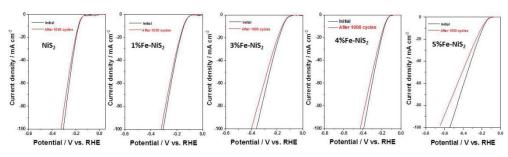
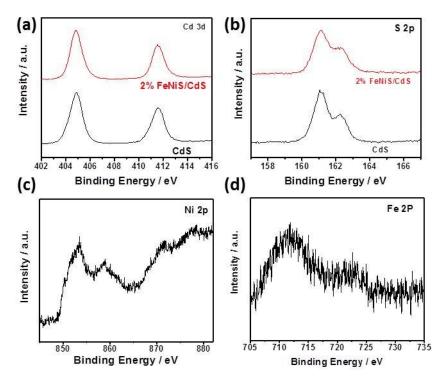
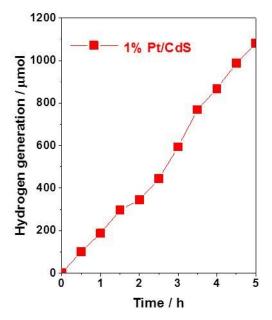




Figure S12. The stability performance of NiS_2 and other Fe doped NiS_2 samples.

Figure S13. XPS curves of (a) Cd 3d, (b) S 2p, (c) Ni 2p and (d) Fe 2p of the FeNiS/CdS and bare CdS under study.

Figure S14. Photocatalytic H₂ evolution of the 1% Pt/CdS catalyst, impregnation method was carried out for the Pt loading and then through hydrogen reduction process for the Pt/CdS formation.

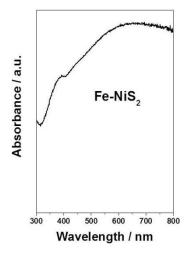


Figure S15. UV-Vis diffuse reflectance spectra of Fe-NiS $_2$ under study.

Reference

- [1] J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865.
- [2] S. Grimme, J. Comput. Chem., 2006, 27, 1787.
- [3] H. J.Monkhorst and J. D. Pack, Phys. Rev. B: Solid State, 1976, 13, 5188.
- [4] T. A. Halgren and W. N. Lipscomb, Chem. Phys. Lett., 1977, 49, 225.