Dual modification of $TiNb_2O_7$ with nitrogen dopants and oxygen vacancies for selective aerobic oxidation of benzylamine to imine under green light

Zhuobin Yu,^{ab} Eric R. Waclawik,^c Zhijian Wang,^a Xianmo Gu,^{*a} Yong Yuan,^d and Zhanfeng Zheng^{*a}

^aState Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, China; E-mail: zfzheng@sxicc.ac.cn; xiaomo-001@163.com

^bUniversity of Chinese Academy of Sciences, Beijing 100049, China

^cSchool of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia ^dXi'an Thermal Power Research Institute Co. Ltd, Xi'an 710032, China

Contents

1. The optimized calcination times for nitrogen doped TiNb_2O_7 in air based on	the
photocatalytic activity	
2. The optimised calcination times for N-TiNb $_2O_7$ in ethanol based on the photocatal	ytic
activityS3	
3. The output spectrum of colored LED light source	
4. N_2 adsorption–desorption isotherms of TiNb ₂ O ₇ and modified samplesS5	1
5. XRD pattern and XPS spectra of TiNb ₂ O ₇ -6hS6	,
6. PL spectra of TiNb ₂ O ₇ and modified TiNb ₂ O ₇ samplesS7	,
7. The recyclability and stability of V _o -N-TiNb ₂ O ₇ S8	1
8. Oxidation of amines photocatalyzed by V_0 -N-TiNb ₂ O ₇ S9	I
9. The UV-Vis-DR spectra of V_0 -N-TiNb ₂ O ₇ with benzylamineS10	1
10. The TPV spectra of V_0 -N-TiNb ₂ O ₇ with benzylamineS11	
11. The calculated VB for TiNb ₂ O ₇ from theoretical band edgeS12	

1. Optimized calcination time for nitrogen doped \textsc{TiNb}_2O_7 sample in air

Fig. S1 (a) UV-Vis diffuse reflectance (UV-Vis-DR) spectra and (b) benzylamine conversion, imine selectivity (80 °C, 24 h, 100 mW/cm² green light) over the different nitrogen-doped samples. Firstly, TiNb₂O₇ sample was calcined at 700 °C for 3 h under NH₃ atmosphere and left to cool naturally to room temperature. Secondly, the obtained powders were put in tube furnace of 500 °C for different times including 0, 5, 30, 60, and 180 min (The sample was introduced to the 500 °C furnace and removed quickly after keeping for the designated time). The sample calcined in air for 5 min has good green light absorption ability and exhibits high activity. Therefore, the processing time of 5 min was chosen in this study.

2. Optimized calcination time for N-TiNb₂O₇ in ethanol

Fig. S2 (a) UV-Vis-DR spectra (b) Benzylamine conversion, imine selectivity (80 °C, 24 h, 100 mW/cm² green light) over ethanol treated N-TiNb₂O₇ photocatalysts. N-TiNb₂O₇ was treated with ethanol at 200 °C in argon gas for different times (0, 2, 3, and 4 h). It indicates that the ethanol treatment on N-TiNb₂O₇ is an effective method to improve the photocatalytic activity for selective oxidation of benzylamine. The sample treated in ethanol for 3 h (designated as V_o-N-TiNb₂O₇) exhibited the highest conversion rate and was chosen for the mechanism study.

3. Output spectra of colored LED light sources

Fig. S3 Output spectra of colored LED light sources used in this study

4. N₂ adsorption–desorption isotherms of TiNb₂O₇ and modified samples

Fig. S4 N₂ adsorption–desorption isotherms of (a) $TiNb_2O_7$, (b) V₀- $TiNb_2O_7$, (c) N- $TiNb_2O_7$, and (d) V₀-N- $TiNb_2O_7$.

5. XRD patterns and XPS spectra of TiNb₂O₇-6h

Fig. S5 (a) XRD patterns and (b) O1s XPS spectra of $TiNb_2O_7$ and modified samples. The $TiNb_2O_7$ -6h sample was prepared by calcination of the dried precipitate from the hydrothermal reaction in air for 6 h.

6. PL spectra of $TiNb_2O_7$ and V_o -N-TiNb₂O₇

Fig. S6 Photoluminescence (PL) spectra of $TiNb_2O_7$ and V_0 -N-TiNb₂O₇.

7. Recyclability and stability of V_o -N-TiNb₂O₇

Fig. S7 Recyclability and stability of V_0 -N-TiNb₂O₇ in the benzylamine oxidation reaction (80 °C, 24 h, 100 mW/cm² green light). The catalyst was used for four successive cycles.

8. Selective oxidation of different amines over V_0 -N-TiNb₂O₇

Entry	Substrate	Product	Conversion(%)	Selectivity(%)
1			68.1	96.4
2			37.9	94.5
3			40.7	95.9
4			8.5	91.5
5	NH ₂	N	13.8	80

Table S1 The activity for the selective oxidation of different amines over V_o -N-TiNb₂O₇

Reaction conditions: 20 mg catalyst, 0.08 mmol reactant, 2 ml acetonitrile, 1 atm O₂, 80

°C, 12 h, green light (intensity at 100 mW/cm²).

9. UV-Vis-DR spectra of $V_{\rm o}\text{-}N\text{-}TiNb_2O_7$ before and after benzylamine adsorption

Fig. S8 UV-Vis-DR spectra of V_0 -N-TiNb₂O₇ before and after benzylamine adsorption.

10. TPV spectra of V_0 -N-TiNb₂O₇ before and after benzylamine adsorption

Fig. S9 Transient photovoltage (TPV) spectra of $TiNb_2O_7$ befor and after benzylamine adsorption.

11. Calculation of VB position for TiNb₂O₇

For $TiNb_2O_7$, the valence band edge and conduction band edge could be theoretically speculated using the equation related to Mulliken electronegativity,

$$E_{\rm VB} = X - E^{\rm e} + 0.5E_{\rm g}; E_{\rm CB} = E_{\rm VB} - E_{\rm g}$$

where E_{CB} and E_g are the bottom position of CB and the band gap energy of the semiconductor, respectively, and X is the geometric mean of the Mulliken electronegativity of the constituent atoms in the semiconductor. The Mulliken electronegativity of an atom is the arithmetic mean of the atomic electron affinity and the first ionization energy. The Mulliken electronegativity for Ti, Nb and O atoms (X_{Ti} , X_{Nb} , and X_0) are 3.45 eV, 3.82 eV, and 7.54 eV (vs. NHE), respectively). Therefore, $X_{TiNb2O7} = (X_{Ti} X_{Nb}^2 X_0^7)^{1/10} = 6.08$ eV (vs. NHE).^{2,3} E^{e} is the energy of free electrons on the hydrogen scale (4.5 eV).¹ Therefore, the corresponding valence band position and conduction band position is -7.64 eV and -4.54 eV (vs. vacuum energy level), respectively. According to the VB spectra in Fig. 5a, it shows that the valence band of TiNb₂O₇ is 0.21 eV more positive than V₀-N-TiNb₂O₇, therefore, the valence band of V₀-N-TiNb₂O₇ is -7.43 eV (vs. vacuum energy level).

- 1. H. Shi, G. Chen, C. Zhang and Z. Zou, ACS Catal., 2014, 4, 3637-3643.
- 2. Y. Qu, W. Zhou, Z. Ren, G. Wang, B. Jiang and H. Fu, *ChemCatChem*, 2014, **6**, 2258-2262.
- 3. G. Wang, Y. Huang, A. Kuang, H. Yuan, Y. Li and H. Chen, *Inorg. Chem.*, 2016, **55**, 9620-9631.