Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

1

Supporting Information

2 Effective Suppression of Interfacial Charge Recombination by

3 12-Crown-4 Substituent on Double-Anchored Organic

4 Sensitizer and Rotating Disk Electrochemical Evidence

5 Chun–Ting Li,[†] Feng–Ling Wu,[†] Chia–Jung Liang,[†] Kuo–Chuan Ho,[‡] and Jiann T. Lin^{*,†}

6 [†]Institute of Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang District, Taipei

7 11529, Taiwan;[#]Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4,

8 Roosevelt Road, Taipei 10617, Taiwan

9 *Corresponding authors: Tel: +886-2-2789-8522; Fax: +886-2-2783-1237; E-mail:
10 jtlin@chem.sinica.edu.tw (Jiann T'suen Lin)

11

12 1. Materials

All the chemicals used in this work were of the purist quality available; and they were 13 purchased from Acros, Aldrich, Alfa Aesar, J. T. Baker, Merck, Matrix scientific, Tokyo Chemical 14 Industry Co., Ltd., or Ishihara Sangyo, Ltd. Solvents used were purified by standard procedures, or 15 purged with nitrogen before use. A ruthenium dye, cis-diisothiocyanato bis(2,2'-bipyridyl-4,4'-16 dicarboxylato) ruthenium (II) bis(tetrabutylammonium) (N719 dye), was obtained from 17 18 Luminescence Technology Corp., Taiwan. A commercial transparent TiO₂ paste (Ti-nanoxide 19 HT/SP, with an average particle size of 20 nm) was purchased from Solaronix S. A., Switzerland. A home-made transparent TiO₂ paste and a home-made scattering TiO₂ paste was prepared according 20 to the published procedures¹. A commercial light scattering TiO₂ particle (US3547, rutile, average 21 size = 300 nm) was obtained from US Research Nanomaterials Inc., Houston, USA. 22

23

24 2. Synthetic procedure of the DCE dyes

25 Unless otherwise specified, all the reactions were performed under N₂ atmosphere, using

standard Schlenk techniques. All the chemicals used in this work were of the purist quality available.
 All sensitizers were synthesized in high yields by using traditional Stille or Suzuki coupling
 reactions. Specific details of DCE dyes are listed below.

4

5 <u>10-(2,3,5,6,8,9-Hexahydrobenzo[*b*][1,4,7,10]tetraoxacyclododecin-12-yl)-10*H*-phenothiazine</u>

(1). 10-H-Phenothiazine (1.20 g, 6.02 mmol), 12-bromo-2,3,5,6,8,9-hexahydrobenzo[b][1,4,7,10]-6 tetraoxacyclododecine (1.6 g, 5.28 mmol), sodium *tert*-butoxide (0.90 g, 9.03 mmol), and (Pd(dba)₂) 7 (0.13 g) were added to a 100 mL two-necked round-bottomed flask under nitrogen. Dry toluene (15 8 mL) and tri(tert-butyl)phosphine (0.494 M in toluene, 0.48 mL) were injected into the flask. The 9 mixture was heated at 120 °C for 20 h. After the reaction was complete, the solution was extracted 10 11 with dichloromethane and washed with brine. The organic extracts collected were dried over MgSO₄ and filtered. The filtrate was dried under vacuum and the crude product was further purified 12 by column chromatography with EA/dichloromethane (1:10 by vol.) as the eluent. The product was 13 obtained as a white solid (1.28 g, 50%). ¹H NMR (CDCl₃, 400 MHz): δ 7.15 (d, 1H, J = 8.8 Hz), 14 6.96 (d, 4H, J = 6.8 Hz), 6.84-6.75 (m, 4H), 6.21 (d, 2H, J = 8.0 Hz), 4.26 (t, 2H, J = 4.0 Hz), 4.1615 (t, 2H, J = 4.0 Hz), 3.89 (t, 2H, J = 4.0 Hz), 3.85 (t, 2H, J = 4.0 Hz), 3.82 (s, 4H).16

17

18 10-(4-(Hexyloxy)phenyl)-10H-phenothiazine (2). 10-H-Phenothiazine (1.55 g, 7.78 mmol), 1bromo-4-(hexyloxy)benzene (2.00 g, 7.78 mmol), sodium tert-butoxide (1.12 g, 11.7 mmol), and 19 20 (Pd(dba)₂) (0.13 g) were added to a 100 mL two-necked round-bottomed flask under nitrogen. Dry toluene (15 mL) and tri(tert-butyl)phosphine (0.494 m in toluene, 0.6 mL) were injected into the 21 flask. The mixture was heated at 120 °C for 20 h. After the reaction was complete, the solution was 22 extracted with dichloromethane and washed with brine. The organic extracts collected were dried 23 over MgSO₄ and filtered. The filtrate was dried under vacuum and the crude product was further 24 25 purified by column chromatography with hexanes/dichloromethane (6:1 by vol.) as the eluent. The product was obtained as a colorless oil (2.5 g, 87%). ¹H NMR (CDCl₃, 500 MHz): δ 7.27 (d, 2H, J 26 = 8.5 Hz), 7.07 (d, 2 H, J = 8.5 Hz), 6.96 (d, 2H, J = 7.5 Hz), 6.82-6.74 (m, 4H), 6.18 (d, 2H, J = 27

8.0 Hz), 4.01 (t, 2H, J = 6.0 Hz), 1.84-1.79 (m, 2H), 1.49-1.47 (m, 2H), 1.36 (m, 4H), 0.91 (t, 3H, J
 = 5.0 Hz).

3

10-Phenyl-10H-phenothiazine (3). 10-H-Phenothiazine (3.00 g, 15.05 mmol), iodobenzene (2.00 4 mL, 15.05 mmol), sodium tert-butoxide (4.00 g, 45.26 mmol), and (Pd(dba)₂) (0.30 g) were added 5 6 to a 100 mL two-necked round-bottomed flask under nitrogen. Dry toluene (15 mL) and tri(tertbutyl)phosphine (0.494 m in toluene, 1.2 mL) were injected into the flask. The mixture was heated 7 8 at 120 °C for 20 h. After the reaction was complete, the solution was extracted with CH₂Cl₂ and washed with brine. The organic extracts collected were dried over MgSO₄ and filtered. The filtrate 9 was dried under vacuum and the crude product was further purified by column chromatography 10 11 with hexanes/dichloromethane (6:1 by vol.) as the eluent. The product was obtained as a colorless oil (3.1 g, 76%). ¹H NMR (acetone- d_6 , 400 MHz) : δ 7.69 (t, 2H, J = 8.0 Hz), 7.55 (t, 1H, J = 8.012 Hz), 7.44 (s, 1H), 7.43 (d, 1H, J = 8.0 Hz), 7.05 (dd, 2H, J = 8.0; 2.0 Hz), 6.93-6.83 (m, 3H), 6.23 13 (dd, 2H, J = 8.0; 1.2 Hz).14

15

16 10-(2,3,5,6,8,9-Hexahydrobenzo[b][1,4,7,10]tetraoxacyclododecin-12-yl)-10H-phenothiazine-3-

carbaldehyde (4). To a 100 mL round flask was added 1 (0.90 g, 2.14 mmol) and injected dry 17 18 DMF (2.0 mL) as solvent under nitrogen at 0 °C. The solution was injected slowly POCl₃ (0.30 mL, 3.25 mmol) and stirred for 1 hr. The mixture was heated at 65 °C for 20 h. The mixture was 19 20 extracted with dichloromethane, and the organic extracts were collected and dried over MgSO₄. 21 After filtration, the filtrate was pumped dry. The crude product was further purified by chromatography using dichloromethane/EA (3:1 by vol.) as the eluent. The product was obtained as 22 a yellow oil (0.20 g, 24%). ¹H NMR (acetone- d_6 , 400 MHz) : δ 9.74 (s, 1H), 7.48 (d, 1H, J = 2.0 Hz), 23 7.44 (d, 1H, J = 1.6 Hz), 7.33 (d, 1H, J = 8.8 Hz), 7.13 (d, 1H, J = 2.4 Hz), 7.03 (dd, 1H, J = 2.4; 24 8.4 Hz), 7.01 (d, 1H, J = 8.8 Hz), 6.94-6.87 (m, 2H), 6.36 (d, 1H, J = 8.4 Hz), 6.28 (d, 1H, J = 8.0 25 Hz), 4.28 (t, 2H, J = 4.0 Hz), 4.24 (t, 2H, J = 4.0 Hz), 3.85 (t, 2H, J = 4.0 Hz), 3.82 (t, 2H, J = 4.026 Hz), 3.74 (s, 4H). HRMS (FAB, m/z): [M]⁺ Calcd for C₂₅H₂₃NO₅S: 449.5210; found: 449.1297. 27

2 7-Bromo-10-(2,3,5,6,8,9-hexahydrobenzo[b][1,4,7,10]tetraoxacyclododecin-12-yl)-10H-pheno-

3 thiazine-3-carbaldehyde (5). Compound 4 was dissolved in DCM (2.0 mL) in a round flask and a solution of NBS (0.10 g, 0.56 mmol) in 2.0 mL of DCM was added to the reaction mixture. The 4 mixture was stirred for 18 h at room temperature and then poured into ice water, and extracted with 5 dichloromethane. The combined organic layers were dried over MgSO₄ and filtered. The filtrate 6 was evaporated to dryness, and the crude product was further purified by silica chromatography 7 using EA/dichloromethane (1:3 by vol.) as the eluent. The product was obtained as a yellow oil (0.3 8 9 g, 99%). ¹H NMR (acetone- d_6 , 400 MHz) : δ 9.77 (s, 1H), 7.49 (d, 1H, J = 2.0 Hz), 7.45 (d, 1H, J =1.6 Hz), 7.33 (d, 1H, J = 8.8 Hz), 7.13 (d, 1H, J = 2.4 Hz), 7.03 (dd, 1H, J = 2.4; 8.4 Hz), 7.01 (d, 10 1H, J = 8.8 Hz), 6.94-6.87 (m, 1H), 6.36 (d, 1H, J = 8.4 Hz), 6.28 (d, 1H, J = 8.0 Hz), 4.28 (t, 2H, J 11 12 = 4.0 Hz, 4.24 (t, 2H, J = 4.0 Hz), 3.85 (t, 2H, J = 4.0 Hz), 3.82 (t, 2H, J = 4.0 Hz), 3.74 (s, 4H). HRMS (FAB, m/z): [M]⁺ Calcd for C25H22BrNO5S: 527.0402; found: 527.0100. 13

14

15 <u>10-(2,3,5,6,8,9-Hexahydrobenzo[*b*][1,4,7,10]tetraoxacyclododecin-12-yl)-3,7-bis(4-hexylthio-</u>

phen-2-yl)-10H-phenothiazine (6). To a 100 mL two-neck round flask was added 3,7-dibromo-10-16 (2,3,5,6,8,9-hexahydrobenzo[b][1,4,7,10]tetraoxacyclododecin-12-yl)-10*H*-phenothia-zine (1.5) 17 g, 18 2.63 mmol), (4-hexylthiophen-2-yl)boronic acid (1.39 g, 6.60 mmol), potassium carbonate (2.18 g, 15.78 mmol) and Pd(PPh₃)₄ (0.15 g) under nitrogen. The mixture was injected dry toluene (3.0 mL) 19 20 and water (3.0 mL). The mixture was heated at 120 °C for 20 h. The mixture was extracted with dichloromethane and washed with brine. The organic extracts collected were dried over MgSO₄ 21 22 The crude product was further purified by chromatography using dichloromethane/EA (4:1 by vol.) as the eluent. The product was obtained as a yellow oil (0.78 g, 39%). ¹H NMR (acetone- d_6 , 400 23 MHz) : δ 7.32 (d, 1H, J = 8.4 Hz), 7.28 (d, 2H, J = 2.0 Hz), 7.21 (s, 2H), 7.16 (dd, 2H, J = 2.0; 8.4 24 Hz), 7.13 (d, 1H, J = 2.0 Hz), 7.03 (dd, 1H, J = 2.0; 8.4 Hz), 6.96 (s, 2H), 6.26 (d, 2H, J = 8.4 Hz), 25 4.28 (t, 2H, J = 4.0 Hz), 4.25 (t, 2H, J = 4.0 Hz), 3.85 (t, 2H, J = 4.0 Hz), 3.83 (t, 2H, J = 4.0 Hz), 26

3.75 (s, 4H), 2.59 (t, 4H, J = 7.6 Hz), 1.67-1.60 (m, 4H), 1.37-1.26 (m, 12H), 0.87 (t, 6H, J = 6.8
 Hz).

3

4 10-(4-(Hexyloxy)phenyl)-3,7-bis(4-hexylthiophen-2-yl)-10H-phenothiazine (7). To a 50 mL round flask was added 3,7-dibromo-10-(4-(hexyloxy)phenyl)-10H-phenothiazine (1.39 g, 2.60 5 mmol), tributyl(4-hexylthiophen-2-yl)stannane (2.97 g, 6.50 mmol), and PdCl₂(PPh₃)₂ (0.070 g, 4 6 mol%) as the catalyst under nitrogen. The mixture was injected dry DMF (3 mL), and heated at 100 7 °C for 18 h. After cooling, the mixture was quenched by aqueous potassium fluoride (KF) and the 8 aqueous layer was extracted with dichloromethane. The combined organic layers were dried over 9 MgSO₄ and filtered. The filtrate was evaporated to dryness, and the crude product was further 10 11 purified by silica chromatography using hexanes/dichloromethane (4:1 by vol.) as the eluent. The 12 product was obtained as a yellow oil (1.3 g, 71%). ¹H NMR (acetone- d_6 , 400 MHz) : δ 7.33 (d, 2H, J = 8.4 Hz), 7.27 (d, 2H, J = 2.4 Hz), 7.21 (d, 2H, J = 8.8 Hz), 7.18 (s, 2H), 7.13 (dd, 2H, J = 2.0; 13 8.8 Hz), 6.94 (s, 2H), 6.17 (s, 2H, J = 8.4 Hz), 2.58(t, 4H, J = 7.6 Hz), 1.86-1.79 (m, 2H), 1.71-1.49 14 (m, 6H), 1.39-1.27 (m, 18H), 0.94-0.87 (m, 9H). 15

16

3,7-Bis(4-hexylthiophen-2-yl)-10-phenyl-10H-phenothiazine (8). To a 50 mL round flask was 17 18 added 3,7-dibromo-10-phenyl-10H-phenothiazine (1.50 g, 3.46 mmol), tributyl(4-hexylthiophen-2yl)stannane (3.95 g, 8.66 mmol), and PdCl₂(PPh₃)₂ (0.10 g, 4 mol%) as the catalyst under nitrogen. 19 20 The mixture was injected dry DMF (3.0 mL), and heated at 100 °C for 18 h. After cooling, the mixture was quenched by aqueous potassium fluoride (KF) and the aqueous layer was extracted 21 with dichloromethane. The combined organic layers were dried over MgSO₄ and filtered. The 22 filtrate was evaporated to dryness, and the crude product was further purified by silica 23 chromatography using hexanes/dichloromethane (4:1 by vol.) as the eluent. The product was 24 obtained as a yellow oil (1.0 g, 48%). ¹H NMR (acetone- d_6 , 400 MHz) : δ 7.73 (t, 2H, J = 8.0 Hz), 25 7.60 (t, 1H, J = 8.0 Hz), 7.48 (d, 2H, J = 8.4 Hz), 7.31 (d, 2H, J = 1.2 Hz), 7.21 (s, 2H), 7.15 (d, 2H, 26

J = 8.4 Hz), 6.96 (s, 2H), 6.17 (d, 2H, J = 8.8 Hz), 2.51 (t, 4H, J = 7.6 Hz), 1.71-161 (m, 4H), 1.39 1.31 (m, 12H), 0.86 (t, 6H, J = 6.8 Hz).

3

4 <u>10-(2,3,5,6,8,9-Hexahydrobenzo[*b*][1,4,7,10]tetraoxacyclododecin-12-yl)-7-(4-(2-(2-(2-meth-</u>

5 oxyethoxy)ethoxy)phenyl)-10H-phenothiazine-3-carbaldehyde (DCE1al). To a 100 mL

two-neck flask 6 round was added 10-(2,3,5,6,8,9-hexahydrobenzo[b][1,4,7,10]tetraoxacyclododecin-12-yl)-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-10H-phenothiazine-3-7 carbaldehyde (0.29 g, 0.50 mmol), 1-bromo-4-(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)benzene 8 (0.24 g, 0.50 mmol), potassium carbonate (0.40 g, 3.00 mmol) and Pd(PPh₃)₄ (0.030 g) under 9 nitrogen. The mixture was injected dry toluene 1 mL and water 1 mL. The mixture was heated at 10 11 120 °C for 20 h. The mixture was extracted with dichloromethane and washed with brine. The 12 organic extracts collected were dried over MgSO₄ The crude product was further purified by 13 chromatography using dichloromethane/EA (1:1 by vol.) as the eluent. The product was obtained as a yellow oil (0.15 g, 44%). ¹H NMR (acetone- d_6 , 400 MHz) : δ 9.74 (s, 1H), 7.51 (d, 2H, J = 8.814 Hz), 7.48 (s, 1H), 7.43 (d, 1H, J = 8.4 Hz), 7.34 (d, 1H, J = 8.4 Hz), 7.26 (s, 1H), 7.18 (dd, 1H, J = 15 2.4; 8.4 Hz), 7.17 (s, 1H), 7.03 (dd, 1H, J = 2.4; 8.4 Hz), 6.99 (d, 2H, J = 8.8 Hz), 6.36 (d, 1H, J =16 8.8 Hz), 6.31 (d, 1H, J = 8.8Hz), 4.29 (t, 2H, J = 4.0 Hz), 4.25 (t, 2H, J = 4.0 Hz), 4.16 (t, 2H, J = 4.017 18 4.8 Hz), 3.86 (t, 2H, J = 4.0 Hz), 3.83 (t, 4 H, J = 4.8 Hz), 3.75 (s, 4H), 3.66 (t, 2H, J = 4.0 Hz), 3.61-3.56 (m, 4H), 3.46 (t, 2H, J = 4.0 Hz), 3.28 (s, 3H). HRMS (FAB, m/z): [M]⁺ Calcd for 19 20 C₃₈H₄₁NO₉S: 687.2502; found: 687.2400.

21

22 (Z)-2-Cyano-3-(10-(2,3,5,6,8,9-hexahydrobenzo[b][1,4,7,10]tetraoxacyclododecin-12-yl)-7-(4-

23 (2-(2-(2-methoxy)ethoxy)ethoxy)phenyl)-10H-phenothiazin-3-yl)acrylic acid (DCE1).

To a 100 mL round flask was added **DCE1al** (0.15 g, 0.21 mmol), cyanoacetic acid (0.10 g, 0.63 mmol), and NH_4OAc (2.97 mg). The mixture was added AcOH (2.0 mL) as the solvent, and heated at 110 °C for 20 h. After the solution was cooled to room temperature, the volatiles were removed in vacuo, and the residue was extracted with EA. The organic extracts were collected and dried over

MgSO₄. After filtration, the filtrate was pumped dry. The crude product was further purified by 1 short silica chromatography using EA/AcOH (25:1 by vol.) as the eluent. The product was obtained 2 as a red solid (60 mg, 40%). ¹H NMR (acetone- d_6 , 400 MHz) : δ 8.06 (s, 1H), 7.80 (s, 1H), 7.63 (dd, 3 1H, J = 2.4; 8.4 Hz), 7.52 (d, 2H, J = 8.8 Hz), 7.35 (d, 1H, J = 8.4 Hz), 7.28 (s, 1H) 7.19 (d, 1H, J = 1.44 8.0 Hz), 7.18 (s, 1H), 7.05 (dd, 1H, J = 2.4; 8.4 Hz), 7.00 (d, 2H, J = 8.4 Hz), 6.35 (d, 1H, J = 8.8 5 Hz), 6.31 (d, 1H, J = 8.8 Hz), 4.29 (t, 2H, J = 4.0 Hz), 4.26 (t, 2H, J = 4.0 Hz), 4.16 (t, 2H, J = 4.46 Hz), 3.85 (t, 2H, J = 4.0 Hz), 3.83 (t, 4H, J = 4.4 Hz), 3.74 (s, 4H), 3.66 (t, 2H, J = 4.0 Hz), 3.61-7 3.56 (m, 4H), 3.46 (t, 2H, J = 4.0 Hz), 3.28 (s, 3H). ¹³C NMR (acetone- d_6 , 500 MHz): δ 165.74, 8 164.34, 160.60, 153.15, 152.17, 151.51, 149.08, 142.54, 137.14, 134.69, 132.89, 132.56, 129.29, 9 127.03, 126.33, 125.33, 121.11, 120.60, 120.11, 119.37, 117.89, 117.07, 116.36, 100.62, 73.08, 10 11 73.05, 71.88, 71.83, 71.70, 71.66, 71.52, 71.50, 70.74, 70.69, 69.24, 68.83, 59.23, 59.21. HRMS 12 (FAB, m/z): $[M]^+$ Calcd for $C_{41}H_{42}N_2O_{10}S$: 754.8510; found:754.2555. Anal. Calcd for C₄₁H₄₂N₂O₁₀S: C, 65.24; H, 5.61; N, 3.71. Found: C, 65.10; H, 5.46; N, 3.78. 13

14

15 <u>5,5'-(10-(2,3,5,6,8,9-Hexahydrobenzo[*b*][1,4,7,10]tetraoxacyclododecin-12-yl)-10*H*-phenothia-</u>

zine-3,7-diyl)bis(3-hexylthiophene-2-carbaldehyde) (DCE2al). To a 100 mL round flask was 16 added 6 (0.78 g, 1.03 mmol) and injected dry DMF (2.0 mL) as solvent under nitrogen at 0 °C. The 17 18 solution was injected slowly POCl₃ (0.30 mL, 3.25 mmol) and stirred for 1 h. The mixture was heated at 65 °C for 20 h. The mixture was extracted with dichloromethane, and the organic extracts 19 20 were collected and dried over MgSO₄. After filtration, the filtrate was pumped dry. The crude product was further purified by chromatography using dichloromethane/EA (1:1 by vol.) as the 21 eluent. The product was obtained as a red oil (0.25 g, 29%). ¹H NMR (CDCl₃, 500 MHz) : δ 9.95 (s, 22 2H), 7.22 (d, 3H, J = 1.5 Hz), 7.18 (d, 1H, J = 8.5 Hz), 7.10 (dd, 2H, J = 8.0; 1.5 Hz), 7.04 (s, 2H), 23 6.94 (d, 2H, J = 8.5 Hz), 6.17 (d, 2H, J = 8.5 Hz), 4.27 (t, 2H, J = 3.5 Hz), 4.18 (t, 2H, J = 3.5 Hz),24 3.91 (t, 2H, J = 3.5 Hz), 3.87 (t, 2H, J = 3.5 Hz), 3.82 (s, 4H), 2.90 (t. 4H, J = 7.5 Hz), 1.69-1.63 (m, 25 4H), 1.30-1.48 (m, 12H), 0.86 (t, 6H, J = 6.0 Hz). HRMS (FAB, m/z): [M]⁺ Calcd for C₄₆H₅₁NO₆S₃: 26 809.2879; found: 809.2866. 27

(2E,2'E)-3,3'-((10-(2,3,5,6,8,9-Hexahydrobenzo[b][1,4,7,10]tetraoxacyclododecin-12-yl)-10H-2 3 phenothiazine-3,7-diyl)bis(3-hexylthiophene-5,2-diyl))bis(2-cyanoacrylic acid) (DCE2). To a 100 mL round flask was added DCE2al (0.25 g, 0.30 mmol), cyanoacetic acid (0.10 g, 0.63 mmol), 4 and NH₄OAc (2.97 mg). The mixture was added AcOH (2.0 mL) as the solvent, and heated at 110 5 °C for 20 h. After the solution was cooled to room temperature, the volatiles were removed in vacuo, 6 and the residue was extracted with EA. The organic extracts were collected and dried over MgSO₄. 7 After filtration, the filtrate was pumped dry. The crude product was further purified by short silica 8 9 chromatography using EA/AcOH (20:1 by vol.) as the eluent. The product was obtained as a red solid (0.20 g, 70%). ¹H NMR (THF- d_8 , 500 MHz) : δ 8.37 (s, 2H), 7.39 (d, 4H, J = 8.5 Hz), 7.26 (t, 10 3H, J = 8.5 Hz), 7.10 (s, 1H), 6.99 (d, 1H, J = 8.0 Hz), 6.27 (d, 2H, J = 8.5 Hz), 4.24 (t, 2H, J = 3.0 11 12 Hz), 4.18 (t, 2H, J = 3.0 Hz), 3.84 (t, 2H, J = 3.0 Hz), 3.80 (t, 2H, J = 3.0 Hz), 3.73 (s, 4H), 2.82 (t, 4H, J = 7.5 Hz), 1.69-1.63 (m, 4H), 1.39-1.33 (m, 12H), 0.91 (t, 6H, J = 6.5 Hz). ¹³C NMR (THF- d_8 , 13 500 MHz): δ 164.74, 164.69, 156.60, 152.66, 151.84, 145.39, 145.32, 145.26, 144.50, 143.24, 143.83, 14 134.83, 134.72, 130.21, 130.18, 130.13, 130.10, 128.78, 128.77, 128.72, 128.70, 127.12, 127.07, 15 126.99, 126.95, 125.85, 125.79, 125.62, 125.34, 125.28, 124.33, 124.06, 124.00, 121.37, 121.22, 16 121.17, 120.78, 120.72, 120.10, 117.96, 117.00, 116.90, 116.67, 72.38, 71.18, 71.06, 70.87, 69.96, 17 18 68.35, 32.05, 31.99, 31.69, 29.60, 29.49, 29.42, 29.27, 24.74, 22.88, 14.05. HRMS (FAB, m/z): [M]⁺ Calcd for C₅₂H₅₃N₃O₈S₃: 944.1890 ; found:944.1875. Anal. Calcd for C₅₂H₅₃N₃O₈S₃: C, 66.15; 19 20 H, 5.66; N, 4.45. Found: C, 66.47; H, 5.67; N, 4.58.

21

22 <u>5,5'-(10-(4-(Hexyloxy)Phenyl)-10H-phenothiazine-3,7-diyl)bis(3-hexylthiophene-2-carbaldehy-</u>

23 <u>de) (DCE3al).</u> To a 100 mL round flask was added 7 (1.70 g, 2.40mmol) and injected dry DMF (2 24 mL) as solvent under nitrogen at 0 °C. The solution was injected slowly POCl₃ (0.56 mL, 6.00 25 mmol) and stirred for 1 h. The mixture was heated at 65 °C for 20 h. The mixture was extracted 26 with dichloromethane, and the organic extracts were collected and dried over MgSO₄. After 27 filtration, the filtrate was pumped dry. The crude product was further purified by chromatography using dichloromethane/hexanes (1:1 by vol.) as the eluent. The product was obtained as a red oil
 (1.2 g, 26 %). ¹H NMR (acetone-*d*₆, 400 MHz) : δ 10.05 (s, 2H), 7.44 (d, 4H, *J* = 2.4 Hz), 7.39 (d,
 2H, *J* = 6.8 Hz), 7.30 (dd, 2H, *J* = 2.0; 8.4 Hz), 7.27 (d, 2H, *J* = 8.8 Hz), 6.22 (d, 2H, *J* = 8.8 Hz),
 4.13 (t, 2H, *J* = 6.4 Hz), 3.01 (t, 4H, *J* = 7.6 Hz), 1.89-1.81 (m, 2H), 1.76-1.69 (m, 4H), 1.56-1.50
 (m, 2H), 1.42-1.38 (m, 8H), 1.35-1.30 (m, 8H), 0.93 (t, 3H, *J* = 6.8 Hz), 086 (t, 6J, *J* = 6.8 Hz).
 HRMS (FAB, m/z): [M]⁺ Calcd for C₄₆H₅₃NO₃S₃: 763.3188; found: 763.3183.

7

8 (2E,2'E)-3,3'-((10-(4-(Hexyloxy)phenyl)-10H-phenothiazine-3,7-diyl)bis(3-hexylthiophene-5,2-

9 diyl))bis(2-cyanoacrylic acid) (DCE3). To a 100 mL round flask was added DCE3al (0.50g, 0.65 mmol), cyanoacetic acid (0.30 g, 3.27 mmol), and NH₄OAc (2.97 mg). The mixture was added 10 11 AcOH (2 mL) as the solvent, and heated at 110 °C for 20 h. After the solution was cooled to room 12 temperature, the volatiles were removed in vacuo, and the residue was extracted with EA. The 13 organic extracts were collected and dried over MgSO₄. After filtration, the filtrate was pumped dry. The crude product was further purified by short silica chromatography using EA/AcOH (25:1 by 14 vol.) as the eluent. The product was obtained as a red solid (0.30 g, 51%). ¹H NMR (THF- d_8 , 400 15 MHz) : δ 8.39 (s, 2H), 7.43 (s, 2H), 7.39 (s, 2H), 7.36 (d, 2H, J = 8.8 Hz), 7.24 (t, 4H, J = 8.8 Hz), 16 6.22 (d, 2H, J = 8.4 Hz), 4.10 (t, 2H, J = 6.4 Hz), 2.84 (t, 4H, J = 8.0 Hz), 1.90-1.84 (m, 2H), 1.68-1017 18 1.64 (m, 4H), 1.58-1.56 (m, 2H), 1.42-1.41 (m, 8H), 1.39-1.34 (m, 8H), 0.96 (t, 3H, J = 6.8 Hz), 0.91 (t, 6H, J = 6.8 Hz). ¹³C NMR (THF- d_8 , 500 MHz): δ 165.83, 164.73, 160.60, 156.40, 151.55, 19 20 145.45, 143.65, 133.12, 132.57, 130.06, 128.64, 126.23, 124.65, 120.84, 117.63, 117.14, 116.94, 114.90, 98.17, 69.12, 32.63, 32.57, 32.21, 30.25, 29.94, 29.74, 26.79, 24.40, 23.59, 23.48, 14.44. 21 HRMS (FAB, m/z): [M]⁺Calcd for C₅₂H₅₅N₃O₅S₃: 897.3304; found: 897.3204. 22

23

24 <u>5,5'-(10-Phenyl-10*H*-phenothiazine-3,7-diyl)bis(3-hexylthiophene-2-carbaldehyde)</u> (DCE4al).

25 To a 100 mL round flask was added 8 (1.00 g, 1.64 mmol) and injected dry THF (2.0 mL) as
26 solvent under nitrogen. The solution was injected slowly *n*-BuLi (3.0 mL, 4.93 mmol) at -78 °C and
27 stirred for 1 h. After 1 h, the solution was injected DMF (0.40 mL, 4.93 mmol), and the mixture was

stirred for 20 h. The mixture was extracted with ether, and the organic extracts were collected and 1 dried over MgSO₄. After filtration, the filtrate was pumped dry. The crude product was further 2 3 purified by chromatography using dichloromethane/EA (1:1 by vol.) as the eluent. The product was obtained as a red oil (0.12 g, 11%). ¹H NMR (acetone-d₆, 400 MHz): δ 10.04 (s, 2H), 7.76 (t, 2H, J 4 = 7.6 Hz), 7.65 (t, 1H, J = 7.6 Hz), 7.50 (d, 2H, J = 7.6 Hz), 7.44 (dd, 2H, J = 1.6; 7.6 Hz), 7.42 (s, 5 2H), 7.28 (dd, 2H, J = 1.6; 8.8 Hz), 6.17 (d, 2H, J = 8.8 Hz), 3.00 (t, 4H, J = 7.6 Hz), 1.74-1.68 (m, 6 4H), 1.40-1.30 (m, 12H), 0.87 (t, 6H, J = 6.8 Hz). HRMS (FAB, m/z): [M]⁺ Calcd C₄₀H₄₁NO₂S₃ for: 7 663.2299; found: 663.2294. 8

9

10 (2E,2'E)-3,3'-((10-Phenyl-10H-phenothiazine-3,7-diyl)bis(3-hexylthiophene-5,2-diyl))bis(2-

11 cyanoacrylic acid) (DCE4). To a 100 mL round flask was added DCE4al (0.50 g, 0.65 mmol), 12 cyanoacetic acid (0.10 g, 3.27 mmol), and NH₄OAc (2.97 mg). The mixture was added AcOH (2.0 13 mL) as the solvent, and heated at 110 °C for 20 h. After the solution was cooled to room temperature, the volatiles were removed in vacuo, and the residue was extracted with EA. The 14 organic extracts were collected and dried over MgSO₄. After filtration, the filtrate was pumped dry. 15 The crude product was further purified by short silica chromatography using EA/AcOH (25:1 by 16 vol.) as the eluent. The product was obtained as a red solid (0.50 g, 51%). ¹H NMR (THF- d_8 , 400 17 18 MHz) : δ 8.34 (s, 2H), 7.67 (t, 2H, J = 7.6 Hz), 7.54 (t, 1H, J = 7.6 Hz), 7.43 (d, 2H, J = 7.6 Hz), 19 7.40 (d, 2H, J = 2.0 Hz), 7.35 (s, 2H), 7.20 (dd, 2H, J = 2.0; 8.4 Hz), 6.12 (d, 2H, J = 8.4 Hz), 2.79 20 (t. 4H, J = 7.6 Hz), 1.65-1.59 (m, 4H), 1.36-1.29 (m, 12H), 0.86 (t, 6H, J = 6.8 Hz). ¹³C NMR (THF- d_8 , 500 MHz): δ 165.42, 156.03, 151.16, 144.69, 143.32, 140.78, 131.78, 131.35, 129.75, 21 129.61, 128.40, 125.92, 125.88, 124.32, 120.55, 116.78, 116.49, 114.42, 32.21, 31.84, 29.58, 29.38, 22 23.95, 23.11, 14.06. HRMS (FAB, m/z): [M]⁺ Calcd for C₄₆H₄₃N₃O₄S₃: 797.2416; found: 797.2410. 23 24

25 3. Synthetic procedure of cobalt redox mediators

26 Unless otherwise specified, all the reactions were performed under N₂ atmosphere, using 27 standard Schlenk techniques. All the chemicals used in this work were of the purist quality available.

The mediator, tris(1,10-phenanthroline)cobalt bis(trifluoromethane-1 reduced-state cobalt 2 sulfonimide), was prepared via a three-step procedure as the following: (1) Cobalt(II) chloride 3 hexahydrate (CoCl₂·6H₂O, 2.38 g, 10 mmol) was dissolved in 15 mL of EtOH, and 1,10phenanthroline (5.95 g, 33 mmol) was dissolved in 10 mL of EtOH. (2) The 1,10-phenanthroline 4 5 solution was dropwise added into the CoCl₂·6H₂O solution, and then the mixed solution was kept at 70 °C for at least 2 h. (3) A solution containing bis(trifluoromethane)sulfonimide lithium salt 6 (LiTFSI, 6.32 g, 22 mmol) in EtOH was added into the previous solution to obtain the light yellow 7 precipitate of Co^{II}(Phen)₃(TFSI)₂. The product was collected by filtration, washed by organic 8 solvents (EtOH, deionized water, diethyl ether and acetonitrile) several times, and dried in vacuum. 9 The 10 oxidized-state cobalt mediator. tris(1,10-phenanthroline)cobalt 11 tris(trifluoromethanesulfonimide), was prepared similarly as the following: (1) CoCl₂·6H₂O (0.50 g, 2.1 mmol) was dissolved in 5.0 mL of deionized water, and 1,10-phenanthroline (1.26 g, 7 mmol) 12 was dissolved in 5.0 mL of MeOH; the latter solution was dropwise added into the former solution, 13 and then the mixed solution was kept at 70 °C for at least 2 h. (2) A methanolic bromine solution 14 (0.29 g, 1.8 mmol, 5 mL) was added in the previous mixture to obtain the chrome yellow precipitate 15 immediately. This chrome yellow precipitate is collected by filtration, washed by organic solvents 16 17 (EtOH, deionized water, diethyl ether and acetonitrile) several times, and dried in vacuum. (3) The 18 chrome yellow precipitate was dissolved in deionized water, and then mixed with an aqueous solution of LiTFSI (2.01 g, 7 mmol); accordingly, the products of Co^{III}(Phen)₃(TFSI)₃ was collected 19 20 by filtration, washed by organic solvents (EtOH and diethyl ether) several times, and dried in 21 vacuum.

22

23 4. DSSCs' assembly

The fluorine–doped tin oxide (FTO, TEC-7, 7 Ω square⁻¹, NSG America Inc., New Jersey, USA) conductive glasses were firstly cleaned via the ultra-sonication in the bathes of neutral cleaner, de-ionized water, acetone, and isopropanol, sequentially. For the iodide-based electrolyte, a 27 20 μ m-thick TiO₂ film, containing a 15 μ m-thick transparent layer (Solarnix transparent paste) and a

5 μ m-thick scattering layer (home-made scattering paste), was casted on the cleaned FTO via the 1 doctor-blade technique with a controlled area of 0.20 cm² and was sintered at 450 °C for 30 min in 2 3 an air atmosphere ¹. For the cobalt-based electrolyte, a 12 μ m-thick TiO₂ film, containing an 8 μ mthick transparent layer (home-made transparent paste) and a 4 μ m-thick scattering layer (home-4 made scattering paste), was prepared via the same procedure. Here, the home-made scattering paste 5 for cobalt-based electrolyte was prepared by adding 250 wt% of commercial TiO₂ particle (US3547, 6 w.r.t. the weight of TiO_2 nanoparticle) in previous home-made transparent paste¹. The film 7 thickness is measured by a profilometer (Dektak3, Veeco/Sloan Instruments Inc., USA). The 8 sintered TiO₂ film was immersed in 3×10^{-4} M dye solution at room temperature for at least 12 h 9 using a mixed solvent of acetonitrile/tert-butanol (ACN/TBA=1:1, in volume ratio). For the cases of 10 the dyes co-adsorbed with chenodeoxycholic acid (CDCA), 10 mM of CDCA is added into each 11 12 dye solution. After rinsing with acetonitrile, the dye-adsorbed TiO₂ photoanode was obtained. Finally, a photoanode was assembled with a sputtered-platinum/FTO counter electrode using a 25 13 μ m-thick Surlyn[®] (SX1170-25, Solaronix S. A., Switzerland) as the cell spacer. The iodide-based 14 electrolyte, containing 0.1 M lithium iodide (LiI), 1.0 M 1,2-dimethyl-3-propylimidazolium iodide 15 (DMPII), 0.04 M iodine (I₂), and 0.5 M 4-tert-butylpyridine (TBP) in acetonitrile/3-16 methoxypropionitrile (ACN/MPN = 8:2, in volume ratio), was injected into the cell gap between 17 18 these two electrodes by capillarity. Similarly, the cobalt-based electrolyte, containing 0.35 M bis(trifluoro-methanesulfonimide), 0.05 19 tris(1,10-phenanthroline)cobalt Μ tris(1,10-20 phenanthroline)cobalt tris(trifluoromethanesulfonimide), 0.8 M TBP, and 0.1 M lithium perchlorate (LiClO₄) in acetonitrile, was used. 21

22

23 5. Analytic techniques

¹H and ¹³C NMR spectra were recorded on Bruker 400 MHz and 500 MHz spectrometers, respectively. Mass spectra (FAB) were recorded on a VG70-250S mass spectrometer. Elemental analyses were carried out on a PerkinElmer 2400 CHN analyzer. Chromatographic separations were conducted on silica gel (60M, 230–400 mesh). Absorption spectra were measured by Dynamica 1 DB-20 UV/Vis spectrophotometer. Fluorescence spectra were recorded on a Hitachi F-4500 2 spectrophotometer. The solution for both of absorption and fluorescence spectra was consisted of 3 10^{-4} M of dye in tetrahydrofuran (THF). Cyclic voltammetry (CV) was performed by a potentiostat 4 (621A, CHI Instruments, Inc.) in a three-electrode system; a platinum electrode, a Pt wire, and a 5 non-aqueous Ag/AgNO₃ (Ag/Ag⁺) electrode were used as the working, counter, and reference 6 electrodes, respectively. A scan rate was set at 50 mV s⁻¹. The electrolyte for CV analysis contained 7 10 mM of dye and 0.1 M of ferrocene/ferrocenium (an internal reference) in THF.

8 Photovoltaic performance of DSSCs was measured by a potentiostat/galvanostat (650B, CH Instruments, Inc.) at AM 1.5G sun light illumination by using a class A quality solar simulator 9 (XES-40S2-CE, San-Ei Electric Co., Ltd., Osaka, Japan). The incident light intensity of 100 mW 10 cm⁻² was calibrated with a standard Si cell (Oriel 91150, Newport Corp.). Incident photon-to-11 12 current conversion efficiencies (IPCE) of DSSCs were recorded by another potentiostat/galvanostat (PGSTAT 30, Autolab, Eco-Chemie, Utrecht, the Netherlands) under monochromatic light 13 illumination in a wavelength range of 400-800 nm. To obtain the IPCE data, another class-A solar 14 simulator (PEC-L11, AM1.5G, Peccell Technologies, Inc., Kanagawa, Japan) equipped with a 15 monochromator (74100, Oriel Instrument, California, USA) was used. The incident radiation flux 16 (φ) was obtained by using an optical detector (818-SL, Newport, California, USA) and a power 17 18 meter (1916-R, Newport, California, USA). Electrochemical impedance spectra (EIS) of DSSCs were recorded by the CHI potentiostat/galvanostat equipped with a FRA2 module in a frequency 19 20 range of 10 mHz-65 kHz and AC amplitude of ±10 mV. Under dark condition, the EIS spectra were measured at an applied voltage of -0.70 V. Under 1 sun illumination (AM 1.5G, 100 mW cm⁻²) 21 the EIS spectra were measured at open-circuit condition. Charge extraction measurements were 22 carried out on the electrochemical work-station (Zahner, Zennium) with a frequency response 23 analyzer under an intensity modulated (10 to 300 W m⁻²) white-light-emitting diode driven by a 24 Zahner (0982wlr02) source supply. The frequency range was set from 100 kHz to 10 MHz. 25

- 26
- 27

1 6. Rotating disk electrode technique

2 Rotating disk electrode (RDE) was recorded by a potentiostat (900B, CHI Instrument) in a 3 three-electrode system. A glassy carbon electrode (GCE, with a geometric area of 0.2 cm²) coated with TiO₂/DCE2 or TiO₂/DCE4 films was individually used as the working electrode. A Pt wire 4 and a non-aqueous Ag/AgNO₃ (Ag/Ag⁺) electrode were used as the counter and reference 5 electrodes, respectively. For measuring the diffusion coefficient of cobalt redox mediator, rotating 6 disk electrode with Pt as the disk material (Pt–RDE, working area: 0.196 cm², Part #AFE2M050PT, 7 PINE Instrument Company, Pennsylvania, USA) was used as the working electrode. The iodide-8 based electrolyte for RDE analysis contained 1.0 mM of tetrabutylammonium triiodide (I₃⁻) and 0.1 9 M lithium perchlorate (LiClO₄) in acetonitrile. The cobalt-based electrolyte for RDE analysis 10 11 included 1.0 mM of tris(1,10-phenanthroline)cobalt tris(trifluoromethanesulfonimide) (Co-phen³⁺) 12 and 0.1 M of lithium perchlorate in acetonitrile. A scan rate was set at 2 mV s⁻¹. Here, RDE analysis 13 aims to obtain two key parameters for the reduction of I₃⁻, *i.e.*, the intrinsic heterogeneous rate constant (k^0) and the effective catalytic surface area (A_e) , simultaneously. At a certain rotating speed 14 (50, 100, 150, 200, 250, or 300 rpm), a linear sweep voltammetry (LSV) curve for the TiO₂/DCE2 15 or TiO₂/DCE4 film is scanned from 0 V to -0.3 V; in other word, more and more negative electrons 16 accumulate at the TiO₂/DCE dye/electrolyte interface to trigger the reduction of the oxidized redox 17 18 species (I_3^- or Co-phen³⁺). Thus, six LSV curves were obtained at different rotating speeds to get six values of the reciprocal currents (i^{-1}) at the standard potential ($E^{0'}$) of I^{-}/I_{3}^{-} or Co-phen²⁺/Co-19 20 phen³⁺. In accordance with the simplified Koutecký–Levich equation below, the values of k^0 and A_e can be obtained via the plots of plots of i^{-1} vs. $\omega^{-0.5}$. 21

$$\frac{1}{i} = \frac{1}{nFA_e k^0 C} + \frac{1}{0.62nFA_e D^{2/3} v^{-1/6} \omega^{1/2} C}$$

where *i* is the specific current obtained from the LSV curve at the standard potential of the redox mediator (I^-/I_3^- or Co-phen²⁺/Co-phen³⁺), *n* is the number of electrons transferred, *F* is Faraday constant, *C* is the concentration of the oxidized redox species (I_3^- or Co-phen³⁺), *D* is the apparent diffusion coefficient of the oxidized redox species, *v* is the kinetic viscosity of electrolyte, and ω is 1 the angular velocity converted from the rotating speed.

Accordingly, the standard redox potential (E^{0}) and the apparent diffusion coefficient (D) for 2 cobalt redox mediator (Co-phen²⁺/Co-phen³⁺) need to be determined. First, the redox potential ($E^{0^{\circ}}$) 3 of Co-phen²⁺/Co-phen³⁺ was confirmed to be 0.62 V versus NHE by its CV curve in Figure S9; this 4 value agrees well with the literatures.^{2, 3} A three-electrode system was used; a platinum electrode, a 5 Pt wire, and a non-aqueous Ag/AgNO₃ (Ag/Ag⁺) electrode were used as the working, counter, and 6 reference electrodes, respectively. A cobalt-based electrolyte contains 10 mM tris(1,10-7 phenanthroline)cobalt bis(trifluoromethanesulfonimide), 1 mM tris(1,10-phenanthroline)cobalt 8 tris(trifluoromethanesulfonimide) and 0.1 M of lithium perchlorate in acetonitrile. A scan rate was 9 set at 100 mV s⁻¹. Second, the diffusion coefficient (D) of Co-phen²⁺/Co-phen³⁺ was measured 10 using Pt-RDE as the working electrode, where Pt is the disk material. The pertinent cobalt-based 11 12 electrolyte for RDE analysis contains 1.0 mM of tris(1,10-phenanthroline)cobalt 13 tris(trifluoromethanesulfonimide) (Co-phen³⁺) and 0.1 M of lithium perchlorate in acetonitrile. A scan rate was set at 2 mV s⁻¹. At different rotating speeds (100, 200, 300, 400, and 500 rpm), five 14 LSV curves were scanned from 0.5 V to -0.5 V to obtain five values of i_{lc} at the horizontal part of 15 cathodic potential region (Figure S10a). In accordance with the Levich equation⁴ below, the 16 diffusion coefficient Co^{III}(phen)₃(TFSI)₃ was determined to be 21.89×10^{-6} cm² s⁻¹ via the plot of 17 cathodic limiting current (i_{lc}) vs. rotating rate root ($\omega^{0.5}$), as shown in Figure S10b. 18

19 $i_{lc} = 0.62 n FAD^{2/3} v^{-1/6} \omega^{1/2} C$

20 where i_{lc} is the cathodic limiting current obtained from the LSV curve at the horizontal part of 21 cathodic potential region, *n* is the number of electrons transferred, *F* is Faraday constant, *C* is the 22 concentration of Co^{III}(phen)₃(TFSI)₃, *D* is the apparent diffusion coefficient of Co^{III}(phen)₃(TFSI)₃, 23 *v* is the kinetic viscosity of electrolyte, and ω is the angular velocity converted from the rotating 24 speed.

25

Figure S1. Cyclic voltammograms of various DCE dyes dissolved in THF (10 mM). The ferrocene 4 was added as an internal reference (ferrocene/ferrocenium) with a standard potential of 0.76V vs. 5 NHE. The oxidation potential of the dye (E_{OX}) is obtained at the center position between the anodic 6 peak and cathodic peak potentials of the dye. The value of HOMO level is obtained via turning the 7 E_{OX} value into being versus to vacuum level. The value of LUMO level is calculated from the 8 equation of LUMO=HOMO $-E_g^{opt}$ (vs. vacuum).

Figure S2. The detailed Frontier orbitals of various DCE dyes.

Dye	State	excitation ^b	λ_{cal}, eV	ſ	∆(Mulliken charge), ^d e	$f \times \Delta \mathbf{q}$
DCE1	\mathbf{S}_1	H→L (97%)	2.51	0.34	Ac:-0.50; Ptz(CE):0.41;	-0.17
					EO:0.09	
	S_2	H1→L (91%)	3.30	0.05	Ac:-0.58; Ptz(CE):0.10;	-0.03
		H3→L (7%)			EO:0.47	
	S_3	H2→L (97%)	3.50	0.03	Ac:-0.56; Ptz(CE):0.55;	-0.02
					EO:0.00	
DCE2	S_1	H→L (99%)	2.26	0.61	Ac:-0.17; T:-0.12; Ptz(CE):0.61;	-0.11
					T':-0.14; Ac':-0.18	
	S_2	H→L1 (97%)	2.48	0.18	Ac:-0.22; T:-0.15; Ptz(CE):0.68;	-0.04
					T':-0.13; Ac':-0.19	
	S_3	H2→L (93%)	3.19	0.26	Ac:-0.15; T:-0.10; Ptz(CE):0.42;	-0.03
					T':-0.05; Ac':-0.12	
DCE3	S_1	H→L (99%)	2.27	0.62	Ac:-0.17; T:-0.13; Ptz(OR):0.60;	-0.11
					T':-0.13; Ac':-0.17	
	S_2	H→L1 (96%)	2.49	0.18	Ac:-0.20; T:-0.13; Ptz(OR):0.67;	-0.04
					T':-0.13; Ac':-0.20	
	S_3	H2→L (94%)	3.18	0.21	Ac:-0.12; T:-0.07; Ptz(OR):0.43;	-0.03
					T':-0.09; Ac':-0.14	
DCE4	S_1	H→L (99%)	2.29	0.61	Ac:-0.17; T:-0.13; Ptz(P):0.60;	-0.11
					T':-0.13; Ac':-0.17	
	S_2	H1→L (96%)	2.51	0.17	Ac:-0.20; T:-0.13; Ptz(P):0.67;	-0.03
					T':-0.13; Ac':-0.20	
	S_3	H2→L (94%)	3.20	0.23	Ac:-0.13; T:-0.07; Ptz(P):0.42;	-0.03
					T':-0.09; Ac':-0.14	

1 **Table S1.** Calculated lower-lying transitions of the dyes.^{*a*}

2 *a*Results are based on gas-phase TD-DFT calculation. $^{b}H = HOMO$, L = LUMO, H1 = The next

3 highest occupied molecular orbital, or HOMO-1, H2 = HOMO-2, L1 = LUMO+1, L2 = LUMO 2.

4 In parentheses is the population of a pair of molecular orbital (MO) excitations. ^cOscillator strength.

5 ^{*d*}The difference of the Mulliken charge between the ground state and excited state.

Figure S6. (a) Incident photon-to-current conversion efficiency (IPCE) curves of the DSSCs with
various DCE dyes (*the DSSC without chenodeoxycholic acid (CDCA) as the co-adsorbent) and (b)
photocurrent density-voltage curve of the N719-based DSSCs, measured under simulated AM 1.5G
illumination in an iodide-based electrolyte.

2 Figure S7. (a) Nyquist plots and (b) Bode plots of the DSSCs with various DCE dyes, measured
3 under 1 sun (100 mW cm⁻², AM1.5G). An iodide-based electrolyte was used for EIS measurement.

6 Table S2. Impedance parameters of the DSSCs with various DCE dyes, measured in an iodide-7 based electrolyte.

Dvo	R _{rec}	$ au_{ m e}^{ m dark}$	$R_{\rm ct2}$	$ au_{ m e}^{ m light}$
Dye	(Ω)	(ms)	(Ω)	(ms)
DCE1	18.70	5.13	16.18	2.26
DCE2	26.55	11.65	11.10	11.64
DCE3	22.49	6.74	11.03	5.13
DCE4	19.09	5.13	14.56	2.26

Figure S8. Linear sweep voltammograms (LSV) for the films of (a) TiO₂/DCE2 and (b) TiO₂/DCE4, measured in the iodide-based electrolyte containing 1.0 mM of tetrabutylammonium triiodide (I_3) and 0.1 M lithium perchlorate $(LiClO_4)$ in acetonitrile. And the linear sweep voltammograms for the films of (c) TiO₂/DCE2 and (b) TiO₂/DCE4, measured in the cobalt-based electrolyte, containing 1 mM of tris(1,10-phenanthroline)cobalt tris(trifluoromethanesulfonimide) and 0.1 M of lithium perchlorate in acetonitrile. A scan rate was set at 2 mV s⁻¹.

2 Figure S9. Cyclic voltammogram of cobalt-based electrolyte, containing 10 mM of tris(1,103 phenanthroline)cobalt bis(trifluoromethanesulfonimide), 1 mM of tris(1,10-phenanthroline)cobalt
4 tris(trifluoromethanesulfonimide) and 0.1 M of lithium perchlorate in acetonitrile, measured at a
5 scan rate of 100 mV s⁻¹.

8

9 **Figure S10.** (a) Linear sweep voltammograms (LSV) and (b) plot of i_{lc} vs. $\omega^{1/2}$, measured in a 10 cobalt-based electrolyte, containing 1 mM of tris(1,10-phenanthroline)cobalt 11 tris(trifluoromethanesulfonimide) and 0.1 M of lithium perchlorate in acetonitrile, using a rotating 12 disk electrode with Pt as the disk material (Pt–RDE), measured at a scan rate of 2 mV s⁻¹.

1 References:

- C.-T. Li, C.-P. Lee, M.-S. Fan, P.-Y. Chen, R. Vittal and K.-C. Ho, *Nano Energy*, 2014, 9,
 1-14.
- 4 2. L. Giribabu, R. Bolligarla and M. Panigrahi, *Chem. Rec.*, 2015, **15**, 760-788.
- 5 3. M. Wang, C. Grätzel, S. M. Zakeeruddin and M. Grätzel, *Energy Environ. Sci.*, 2012, 5,
 9394-9405.
- 7 4. A. J. Bard and L. R. Faulkner, *Electrochemical Methods: Fundamentals and Applications*,
 8 John Wiley & Sons, Inc., New York, 2001.
- 9