Electronic Supplementary Information

Experimental Section

Materials: Ni(NO₃)₂·6H₂O, hexamethylenetetramine, KOH, NaH₂PO₂, urea and HCl were obtained from Beijing Chemical Corporation. Acetone and ethanol were purchased from Tianjin Chemical Corporation. All chemicals were used as received without further purification. Nafion (5 wt%) were purchased from Sigma-Aldrich Chemical Reagent Co., Ltd. CC was bought from Hongshan District, Wuhan Instrument Surgical Instruments business. The water used throughout all experiments was purified through a Millipore system.

Preparation of NiO NF/CC and Ni₂P NF/CC: In a typical procedure, 5 mmol Ni(NO₃)₂·6H₂O and 15 mmol hexamethylenetetramine were dissolved in 36 mL distilled water and stirred to form a clear solution. A piece of CC (3 cm \times 2 cm) was cleaned by sequential sonication in acetone, ethanol and water several times to remove the surface impurities. Above solution and CC were transferred to a 50 mL Teflon-lined stainless-steel autoclave, which was sealed and maintained at 100 °C for 10 h in an electric oven, and then allowed to cool to room temperature. The resulting CC was rinsed several times with distilled water and ethanol with the assistance of ultrasonication, followed by drying 2 h at 60 °C, and then annealed at 350 °C in air for 2 h to obtain NiO NF/CC. To prepare Ni₂P NF/CC, NiO NF/CC was placed in the hot center of a tube furnace, and an alumina boat containing 500 mg of NaH₂PO₂ was placed at the farthest upstream position within the tube furnace. Subsequently, the two alumina boats were heated at 300 °C for 2 h with a heating speed of 2 °C min⁻¹ in Ar atmosphere, and then naturally cooled to ambient temperature under Ar. The mass loading of Ni₂P was determined to be 0.92 mg cm⁻². The fabrication of CoP NF/CC similar to Ni₂P NF/CC, except for replacing Ni(NO₃)₂·6H₂O with was $Co(NO_3)_2 \cdot 6H_2O$.

Preparation of Ni₂P NFs/GCE: Pure Ni₂P NFs were synthesized by the same way without the presence of CC. In a typical procedure, the glassy carbon electrode

(GCE, diameter 3 mm) was respectively polished with 1, 0.3, and 0.05 μ m alumina slurry and cleaned by brief ultrasonication. Then cleaned electrode was dried under nitrogen flow. 2 mg Ni₂P NFs were dispersed in 20 μ L 5 wt% Nafion solution and 980 μ L of aqueous ethanol solution (1:1). The Ni₂P NFs modified GCE (Ni₂P NFs/GCE) was prepared by casting 10.35 μ L of Ni₂P NFs suspension (2 mg mL⁻¹) on a GCE surface and dried in air as working electrode.

Preparation of Pt/C and RuO₂ loaded electrodes: RuO₂ catalyst was prepared as follows. In brief, 0.01 mol RuCl₃·3H₂O was dissolved in 100 mL deionized water and heated at 100 °C for 10 min, followed by the addition of 1 mL 1.0 M KOH solution. The reaction mixture was maintained at 100 °C under stirring for 45 min. After that, the solution was centrifuged for 10 minutes and filtered. The precipitate was washed several times with deionized water to remove the remaining chlorides. The resulting Ru-hydroxide was dried for 5 h at 80 °C and then calcined in air at 300 °C for 3 h to obtain RuO₂. To prepare Pt/C and RuO₂ loaded electrodes, 20 mg Pt/C or RuO₂ and 10 μ L 5 wt% Nafion solution were dispersed in 1 mL 1:1 v water/ethanol solvent by 30-min sonication to form an ink finally. Then 46 μ L catalyst ink was loaded on bare CC with a catalyst loading of 0.92 mg cm⁻².

Characterizations: XRD data were acquired on a RigakuD/MAX 2550 diffractometer with Cu K α radiation (λ =1.5418 Å). SEM measurements were carried out on a XL30 ESEM FEG scanning electron microscope at an accelerating voltage of 20 kV. TEM measurements were performed on a HITACHI H-8100 electron microscopy (Hitachi, Tokyo, Japan) with an accelerating voltage of 200 kV. XPS measurements were performed on an ESCALABMK II X-ray photoelectron spectrometer using Mg as the exciting source.

Electrochemical measurements: Electrochemical measurements were performed with a CHI 660E electrochemical analyzer (CH Instruments, Inc., Shanghai) using a three-electrode system with Ni₂P NF/CC, graphite plate, and saturated calomel electrode (SCE) as working electrode, counter electrode, and reference electrode, respectively. Polarization curves were obtained using linear sweep voltammetry with a scan rate of 5 mV s⁻¹. All tests were carried out at room temperature.

Fig. S1. XRD pattern of Ni₂O.

Fig. S2. SEM images of bare CC.

Fig. S3. EDX spectrum of Ni_2P NF/CC.

Fig. S4. (a) XRD pattern of Ni_2P NFs. (b) SEM images of Ni_2P NFs.

Fig. S5. (a) XRD pattern of CoP nanoflakes. (b) SEM images of CoP NF/CC.

Fig. S6. LSV curves of Ni₂P NF/CC and CoP NF/CC in 1.0 M KOH with 0.5 M urea at a scan rate of 5 mV s⁻¹.

Fig. S7. SEM images for Ni_2P NF/CC after HER (a) and UOR (b) electrolysis.

Fig. S8. (a) LSV curves of Ni₂P NF/CC and Ni₂P NFs/GCE in 1.0 M KOH with 0.5 M urea at a scan rate of 5 mV s⁻¹. (b) Tafel plots for Ni₂P NF/CC and Ni₂P NFs/GCE. (c) LSV curves of Ni₂P NF/CC and Ni₂P NFs/GCE in 1.0 M KOH with 0.5 M urea at a scan rate of 5 mV s⁻¹. (d) Tafel plots for Ni₂P NF/CC and Ni₂P NFs/GCE. (e) Polarization curves for Ni₂P NF/CC||Ni₂P NF/CC and Ni₂P NFs/GCE||Ni₂P NFs/GCE in 1.0 M KOH with 0.5 M urea at scan rate of 5 mV s⁻¹. (f) Nyquist plots for Ni₂P NF/CC and Ni₂P NF/CC and Ni₂P NFs/GCE.

Movie S1. This movie shows vigorous evolution of gas bubbles on Ni_2P NF/CC electrodes in a two-electrode setup driven by 1.10 V in 1.0 M KOH with 0.5 M urea.