Electronis Supplementary Information (ESI)

A facile spray pyrolysis method to prepare Ti-doped ZnFe₂O₄ for boosting photoelectrochemical water splitting

Yongsheng Guo,^a Ningsi Zhang,^a Xin Wang,^a Qinfeng Qian,^a Shiying Zhang,^c Zhaosheng Li^{*a} and Zhigang Zou^{ab}

^a Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, 22 Hankou Road, Nanjing, 210093, People's Republic of China;
 ^b Jiangsu Key Laboratory for Nano Technology, Department of Physics, Nanjing University, 22 Hankou Road, Nanjing, 210093, People's Republic of China;
 ^c Hunan Key Laboratory of Applied Environmental Photocatalysis, Changsha University, Changsha, People's Republic of China.

*Corresponding author:

Prof. Z. Li E-mail: zsli@nju.edu.cn Fax: +86-25- 83686304(800)

Scheme S1 Schematic illustration of the $ZnFe_2O_4$ photoanodes preparation procedure. When the temperature of the hot palte was 400 °C, the films were coated on FTO by spray pyrolysis.

Fig. S1 XRD patterns of $ZnFe_2O_4$ with different Ti doping concentrations. (\clubsuit = peaks from FTO). The peaks in Fig. S1 (a) at $2\theta = 30^\circ$, 35.2° and 42.8° represent (2 2 0), (3 1 1) and (4 0 0) crystal planes of the cubic spinel $ZnFe_2O_4$. (b) Magnified view from 25° to 31°.($ZnFe_2O_4$: PDF#22-1012, SnO_2 : PDF#46-1088)

Fig. S2 FTIR spectra of pure and 6% Ti-doped $ZnFe_2O_4$ samples: (a) wavenumbers from 4000 to 400 cm⁻¹, (b) Magnified view from 1500 to 400 cm⁻¹.

Fig. S3 SEM images for the (a) top view of pure $ZnFe_2O_4$. (b) cross section view of pure $ZnFe_2O_4$. (c) top view of 6% Ti-doped $ZnFe_2O_4$. (d) cross section view of 6% Ti-doped $ZnFe_2O_4$.

Fig. S4 Top view and cross section view SEM images of $ZnFe_2O_4$ with different Ti doping concentrations. (a = 0%, b = 1%, c = 3%, d = 6%, e = 10%).

Fig. S5 Current-Potential curves of $ZnFe_2O_4$ photoanodes with different Ti doping concentrations measured in 1 M NaOH aqueous solution under AM 1.5 G illumination (100 mW cm⁻²).

Fig. S6 Cyclic voltammetry with different scan rates of (a) pure $ZnFe_2O_4$ photoanode and (b) 6% Ti-doped $ZnFe_2O_4$ photoanode.

Fig. S8 UV-vis spectrum of pure ZnFe₂O₄ and 6% Ti-doped ZnFe₂O₄ photoanodes.

Fig. S9 Band structure of ZnFe₂O₄: (a) pure ZnFe₂O₄, (b) 6% Ti-doped ZnFe₂O₄.

Fig. S10 Mott-Schottky plots of pure $ZnFe_2O_4$ and Ti-doped $ZnFe_2O_4$ photoanodes in 1 M NaOH, the ac amplitude is 5 mV and the frequency is 1000 Hz.

Fig. S11 (a) The Nyquist plots of pure $ZnFe_2O_4$ and Ti-doped $ZnFe_2O_4$ from the raw date and fitting data. (b) the magnified plot in the high frequency.

		-		-	
Samples	Pure	1% Ti-doped	3% Ti-doped	6% Ti-doped	10% Ti-doped
$\operatorname{Rs}(\Omega)$	31.64	31.3	27.4	25.23	30.12
$R1(\Omega)$	1.25×10^{6}	1.58×10^{6}	1.98×10^{6}	7.46×10^{5}	9.02×10 ⁵
CPE1(F)	6.89×10 ⁻⁶	6.26×10-6	5.81×10-6	9.36×10 ⁻⁶	8.22×10-6
$R2(\Omega)$	54585	23414	21674	16035	31318
CPE2(F)	1.32×10-5	2.85×10-5	3.16×10 ⁻⁵	3.35×10 ⁻⁵	1.79×10 ⁻⁵

 Table S1 Fitting data of the two-RC equivalent circuit.

Fig. S12 Current-Potential curves (a) and XRD patterns (b) of 6% Ti-doped $ZnFe_2O_4$ calcined at different temperatures.

Fig. S13 (a) The Nyquist plots of 6% Ti-doped $ZnFe_2O_4$ calcined at different temperatures from the raw date and fitting data. (b) Magnified plot in the high frequency.

Samples	550 °C	600 °C	650 °C
Rs (Ω)	31.58	26.3	34.49
$R1(\Omega)$	5.15×10 ⁵	5.8×10 ⁵	7.75×10 ⁵
CPE1(F)	1.36×10 ⁻⁵	1.01×10 ⁻⁵	7.71×10 ⁻⁶
$R2(\Omega)$	23421	23174	12048
CPE2(F)	2.89×10 ⁻⁵	2.07×10 ⁻⁵	2.44×10 ⁻⁵

Table S2 Fitting data of the two-RC equivalent circuit.

Fig. S14 The Faradaic Efficiency of 6% Ti-doped $ZnFe_2O_4$ measured at 1.23 V vs. RHE under AM 1.5 G illumination (100 mW cm⁻²).