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Table S1. Sample list of the Li,MnQO; electrode disassembled for structural analyses.

Sampling Potential / V Capacity Li content x in Li,MnO; *
point /mAhgte

15t cycle #1 - 0.0 2.00
#2 4.48 115.1 1.50

#3 4.53 2294 1.00

#4 4.60 345.0 0.49

#5 4.80 448.1 0.04

#6 3.11 -110.1 0.49

#7 2.00 -200.9 0.94

2md cycle #8 3.63 100.0 0.54
#9 4.50 229.0 -0.03

#10 4.80 497.9 -1.17

#11 2.00 —-185.3 0.26

20 cycle #12 2.00 -139.2 —0.81
21% cycle #13 4.80 131.3 -1.22

@ Table S1 lists the individual electrode samples disassembled from different cells, and their
capacity values may slightly deviate from Fig. 1 and 6 in the main text. Discharging capacities
are expressed as negative values.

bLi contents in Li,MnQj are estimated from the observed capacities with respect to the theoretical
capacity of 459 mA h g!. The Li contents estimated for the samples on and after the 2" charging
to 4.8 V (#10-13) are significantly reduced to negative values, which are fictitious due to an

additional charging capacity in the 2" cycle coming from the electrolyte decomposition (Fig. 6).
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Fig. S1. SR-XRD profiles of (a) pristine electrode (#1), (b) electrode charged to 4.8 V in the 1%
cycle (#5), and (¢) electrode discharged to 2.0 V in the 20t cycle (#12), along with the simulated

profiles for Li,MnOs, Lig ¢sMn,04, and LiMn;0,, respectively.
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Fig. S2. 'TH MAS NMR spectra of the Li,MnOj; electrode for the 1%t cycle. The signal intensities
are normalised to the scan numbers and sample weights in the rotors. For the intercalated proton
species, the isotropic signal and its spinning sidebands are marked with arrows and asterisks,
respectively. The inset shows overall spectra, which indicate the 'H signal (and its spinning

sidebands) coming from PVDF and background components. The sample numbers are listed in

Table S1.
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Fig. S3. Atomic column images and their FFT patterns along with the simulated patterns for the

electrode sample disassembled at the 50% SOC in the 15t cycle (#3).
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Fig. S4. TEM images and EEL spectra for the electrode samples disassembled after the
electrochemical measurements at room temperature. (a) The pristine (soaked) electrode, (b) the
electrode charged to 4.8 V in the 1% cycle, and (¢) the electrode discharged to 2.0 V in the 15t cycle
along with the SAED and simulation patterns. (d) EEL spectra at Mn M-edge + Li K-edge along

with the reference materials.
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Fig. S5. Mn/(O+Mn) atomic ratio mapping from the O K-edge and Mn L-edge EELS data for the
sample disassembled at (a) the 50% SOC in the 1% cycle (#3), (b) 2.0 V in the 20™ cycle (#12), and

(c) 4.8 V in the 21% cycle (#13), respectively.
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Fig. S6. (a) Mn L- and (b) O K-edge XAFS spectra of the pristine (#1), charged and discharged
Li;MnOj; samples in the 15t cycle (#5,7) along with (¢c) Mn L- and (d) O K-edge spectra of the
pristine and charged LiMn,0, (Lis-(Mn,0,) as references. The Mn L- and O K-edge spectra were
acquired in the inverse partial fluorescence yield (IPFY) and partial fluorescence yield (PFY)
modes, respectively, which are relatively bulk-sensitive with a probing depth of up to ~500 nm, at
the beamline BL-11 at the SR Center, Ritsumeikan University (Shiga, Japan). The detailed

experimental conditions were described elsewhere.”'
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Fig. S7. (a) Charge—discharge profiles of the Li/Li,MnO; cell up to the 20% cycle. The charging
and discharging capacities are plotted as a function of cycle number in the inset. (b) dQ/dV curves

of the Li/Li,MnQj cell up to the 20™ cycle.
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Fig. S8. (a) °Li MAS NMR spectra of the Li,MnQj electrode for the 1%, 2 cycles, 20" discharge,
and 215 charge. The spectral range between —1500 and 1600 ppm is magnified in (b). After the 1

cycle (#8-13), the broad signal centred at ca. 50 ppm is clearly observed, which is in the resonance
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range of those reported for the lithium manganese(IIT) oxides.>>** The sample numbers are listed

in Table S1.
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Fig. S9. Mn L-edge XAFS spectra of the Li,MnOjs electrode samples discharged in the 20t cycle

and charged in the 21% cycle (#12,13).
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Supplementary Discussion on the XAFS spectra

Fig. S6 shows the Mn L- and O K-edge XAFS spectra of the pristine, charged and discharged
Li,MnO; samples in the 1% cycle. The resulting spectra were almost identical to those in the
previous study.®' The Mn L-edge spectrum of the pristine sample is similar to that of MnO, having
the tetravalent Mn ions.>' On the other hand, the Li,MnOs electrode samples charged to 4.8 V and
discharged to 2.0 V show the spectral shape similar to LiMn,0, (Fig. S6¢), suggesting some
decrease of the Mn oxidation state (+3.5).5! This surprising Mn valence reduction on delithiation
seems to be associated with the increased pre-edge intensity at 527-534 eV at the O K-edge (Fig.
S6b), the latter suggests the increased contribution of the lattice oxygen to charge compensation,
that is, the oxidation of lattice oxygen.>! This may indicate that the oxygen loss from the structure
leads to the charge redistribution in the oxygen-deficient structure, which results in the charge
transfer from the lattice oxygen to the Mn ions. During the discharging to 2.0 V, the charge
compensation for relithiation is achieved by the reduction of lattice oxygen, whereas the Mn
valence state remains as +3.5. These behaviours are different from LiMn,O, spinel, where the
delithiation/relithiation is compensated by the redox reaction of the Mn ions (Fig. S6c,d).

The Mn L-edge XAFS spectra of the 20 discharged and 215 charged electrode samples are similar
to each other (Fig. S9). The centre-of-gravity positions of the L; peak at 637—649 eV shift to lower
energy compared to those of the 1% charged and discharged electrodes (Fig. S6), indicating that the
divalent and trivalent Mn ions become predominant after the multiple charge—discharge cycles.
These results lead us to a conclusion that in the degraded material the Mn valence state is reduced

and the redox reaction of the Mn ions is less significant to compensate the delithiation/relithiation.
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