Preparation of Covalent Triazine Framework with the Imidazolium Cation Embedded in Basic Sites and Its application for CO₂ Capture

Kwangho Park^a, Kwangyeol Lee^a, Hyunuk Kim^b, Vinothkumar Ganesan^a, Kanghee Cho^b, Soon Kwan Jeong^b, Sungho Yoon^{*a}

^aDepartment of Bio&Nano Chemistry, Kookmin University, 861-1, Jeongneung-dong, Seongbuk-gu, Seoul, Republic of Korea

^bKorea Institute of Energy Research, 152, Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea

Contents

- 1. Synthesis of bpim-CTF-400 with various ZnCl2 equivalent and porosity measurements
- 2. SEM and EDS measurements.
- 3. Powder X-ray diffraction
- 4. Thermal stability analysis
- 5. Carbon dioxide and Nitrogen physisorption measurements.
- 6. Heat of CO_2 adsorption
- 7. CO_2/N_2 selectivity studies by IAST calculation.
- 8. Liquid-state NMR spectra
- 9. Liquid Chromatography-Mass spectrum
- 10. Proposed structural change of bpim-CTFs in varying synthetic temperature
- 11. Representative characteristics of other CTFs and POPs
- 12. References

List of Figures

- Figure S1. Nitrogen sorption isotherms of bpim-CTF synthesized with different ZnCl₂ equivalent at 77 K
- Figure S2. SEM & EDS mapping of bpim-CTFs
- Figure S3. XPS measurement of bpim-CTFs
- Figure S4. TGA measurements of bpim-CTFs and monomer
- Figure S5. Carbon dioxide adsorption isotherms of bpim-CTFs at 288 K
- Figure S6. Nitrogen adsorption isotherms of bpim-CTFs at 298 K
- Figure S7. Virial analysis of CO₂ adsorption data for bpim-CTF400 and 500
- Figure S8. IAST plots of bpim-CTFs calculated from the nitrogen isotherms measured at 298 K.
- Figure S9. IAST plots of bpim-CTFs calculated from the nitrogen isotherms measured at 298 K.
- Figure S10. ¹H-NMR spectrum of 1,3-bis(5-cyanopyridyl)-imidazolium bromide in DMSO-d₆.
- Figure S11. ¹³C-NMR spectrum of 1,3-bis(5-cyanopyridyl)-imidazolium bromide in DMSOd₆.
- Figure S12. LC-MS spectrum of 1,3-bis(5-cyanopyridyl)-imidazolium bromide
- Figure S13. Proposed schematic representation for the gradual transformation of bpim-CTFs to N-doped porous carbons derived by thermal decomposition

List of Tables

- Table S1. Porosity data of bpim-CTFs synthesized with different ZnCl₂ equivalent
- Table S2. Atomic composition of bpim-CTFs by EDS
- Table S3. Characteristics of reported CTFs
- Table S4. Characteristics of reported POPs

Sample name	BET SA	V pore, tot	Average pore diameter
monomer : ZnCl ₂	[m ² g ⁻¹]	cm ³ g ⁻¹	nm
1:1	12	0.0057	-
1:5	787	0.3436	2.19
1:10	610	0.7541	2.28

1. Synthesis of bpim-CTF-400 with various ZnCl₂ equivalent and porosity measurements

Table S1. Porosity data of bpim-CTFs synthesized with different ZnCl₂ equivalent

Figure S1. Nitrogen sorption isotherms of bpim-CTF synthesized with different ZnCl₂ equivalent at 77 K

2. SEM and EDS measurements.

Figure S2. SEM & EDS mapping of bpim-CTFs

Sample	Ca	Na	Cla	Bra	Zna
bpim-CTF-250	63.8	33.0	3.2	0.0	NA
bpim-CTF-300	68.2	27.2	4.4	0.2	NA
bpim-CTF-400	67.8	30.4	1.8	0.0	NA
bpim-CTF-500	75.1	21.9	3.0	0.0	NA

Table S2. Atomic composition of bpim-CTFs by EDS

^aWeight %; NA refers to "Not Available.".

3. Powder X-ray diffraction

Figure S3. XPS measurement of bpim-CTFs

4. Thermal stability analysis

Figure S4. TGA measurements of bpim-CTFs and monomer

5. Carbon dioxide and Nitrogen physisorption measurements.

Figure S5. Carbon dioxide adsorption isotherms of bpim-CTFs at 288 K

Figure S6. Nitrogen adsorption isotherms of bpim-CTFs at 298 K

6. Heat of CO₂ adsorption

The CO_2 adsorption data measured at 288 K and 298 K were fitted by the virial equation (1) to estimate the enthalpy of adsorption.

$$\ln(p) = \ln(n) + (1/T) \sum_{i=0}^{m} a_i n^i + \sum_{i=0}^{m} b_i n^i$$
(1)

where *p* is pressure, *n* is amount adsorbed, T is temperature, and a_i and b_i are temperature independent empirical parameters. The isosteric heat of adsorption was estimated from the following equation (2) as a function of CO₂ uptake.

Figure S7. Virial analysis of CO₂ adsorption data for bpim-CTF400 (top) and 500 (bottom)

7. CO₂/N₂ selectivity studies by IAST calculation.

Ideal adsorbed solution theory (IAST) data was calculated based on a single-site Langmuir model for N_2 and dual-site Langmuir model for CO_2 to fit the adsorption data.²

The dual-site Langmuir model is defined as

$$q = q_A + q_B = \frac{q_{sat,A}b_Ap}{1 + b_Ap} + \frac{q_{sat,B}b_Bp}{1 + b_Bp}$$

(A,B = distinct adsorption sites)

Figure S8. IAST plots of bpim-CTF-300 (top), 400 (bottom left), and 500 (bottom right) calculated from the carbon dioxide isotherms measured at 298 K.

The single-site Langmuir model is defined as,

$$q = \frac{q_{sat}bp}{1+bp}$$

(q = molar loading of adsorbate, q_{sat} = saturation loading, b = Langmuir constant)

Finally, the selectivity of bpim-CTFs were obtained with the fitted values using following equation,

$$S = \frac{q_1/q_2}{p_1/p_2}$$

the ratio of CO_2 :N₂ were defined as 15:85 for the calculation.

8. Liquid-state NMR spectra.

Figure S10. ¹H-NMR spectrum of 1,3-bis(5-cyanopyridyl)-imidazolium bromide in DMSO- d_6 .

¹H NMR (400 MHz, DMSO-d₆) δ [ppm] = 11.07 (t, ⁴*J*_{HH} = 1.66 Hz, 1H, NCHN), 9.24 (dd, ⁵*J*_{HH} = 0.77

Hz, ${}^{4}J_{\text{HH}} = 2.23$ Hz, 2H, CH- $_{6\text{py}}$), 8.86 (dd, ${}^{4}J_{\text{HH}} = 2.23$ Hz, ${}^{3}J_{\text{HH}} = 8.70$ Hz, 2H, CH- $_{4\text{py}}$), 8.84 (d, ${}^{4}J_{\text{HH}} = 1.66$ Hz, 2H, NCHCHN), 8.50 (dd, ${}^{5}J_{\text{HH}} = 0.77$ Hz, ${}^{3}J_{\text{HH}} = 8.70$ Hz, 2H, CH- $_{3\text{py}}$)

Figure S11. ¹³C-NMR spectrum of 1,3-bis(5-cyanopyridyl)-imidazolium bromide in DMSO- d_6 .

¹³C NMR (400 MHz, DMSO-d₆) δ [ppm] = 153.3 (s, CH-_{6py}), 148.5 (s, CH-_{2py}), 145.1 (s, CH-_{4py}), 136.3 (s, NCHN), 121.0 (s, NCHCHN), 116.5 (s, C-_{5py}), 115.7 (s, C-_{3py}), 111.0 (s, CN).

9. Mass spectrum

Figure S12. LC-MS spectrum of 1,3-bis(5-cyanopyridyl)-imidazolium bromide

10.Proposed structural change of bpim-CTFs in varying synthetic temperature

Figure S13. Proposed schematic representation for the gradual transformation of bpim-CTFs to N-doped porous carbons derived by thermal decomposition*(concept for N-doped porous carbon was referred to ref 122)

11. Representative characteristics of other CTFs and POPs

CTFs	BET surface area (m ² g ⁻¹)	$CO_2 \text{ (mmol g}^{-1})^a$	CO_2/N_2^d	Ref.
fl-CTF300	15	0.71	37	
fl-CTF350	1235	2.29	23	
fl-CTF400	2862	1.97	16	1
fl-CTF500	2322	1.65	12	
fl-CTF600	2113	1.80	12	
MCTF@300	640	1.41	-	
MCTF@400	1060	1.58	-	2
MCTF@500	1510	2.26	-	
PCTF-1	2235	1.87^{b}	14	2
PCTF-2	784	1.01^{b}	14	3
PCTF-3	641	1.35 ^b	25	
PCTF-4	1090	1.51^{b}	26	
PCTF-5	1183	1.51 ^b	32	4
PCTF-6	79	-	-	
PCTF-7	613	1.34 ^b	41	
FCTF-1	662	3.21	31	-
FCTF-1-600	1535	3.41	19	_ 5
CTF-FUM-350	230	2.31	102.4	
CTF-FUM-400	480	1.98	96.3	
CTF-FUM-500	603	1.50	67.3	6
CTF-DCN-400	690	1.18	33.7	
CTF-DCN-500	735	1.55	37.0	
COP-3	413	1.14	24.4	7
PCTF-1	853	2.05	24	
PCTF-2	811	1.70	17	0
PCTF-3	391	0.95	14	8
PCTF-4	1404	2.86	56	
CTF-BI-3	677	1.97 ^c	52.4 ^e	
CTF-BI-4	1025	2.43 ^c	102.7 ^e	
CTF-BI-5	836	2.39 ^c	40.2 ^e	
CTF-BI-6	759	1.75 ^c	41.0 ^e	
CTF-BI-7	642	1.48°	33.6 ^e	9
CTF-BI-8	55	-	-	
CTF-BI-9	885	2.10^{c}	29.0 ^e	
CTF-BI-10	1099	2.29^{c}	39.1 ^e	
CTF-BI-11	1549	2.34 ^c	34.9 ^e	
CTF-TB-1	294	1.33°	50.0 ^e	
CTF-TB-2	446	1.73°	52.2 ^e	
CTF-TB-3	612	2.19°	48.1 ^e	10
CTF-TB-4	581	1.49°	39.0 ^e	
CTF-TB-5	495	1.33°	39.5 ^e	
CTF-TB-7	732	2.01 ^c	35.4 ^e	

Table S3. Characteristics of reported CTFs

CTF-TB-8	689	1.59 ^c	32.5 ^e	
CTF-TB-9	626	1.63 ^c	41.0 ^e	
bipy -CTF-300	360	0.98	41	
bipy -CTF-400	753	1.78	40	
bipy -CTF-500	1548	3.07	42	
bipy-CTF-600	2479	2.95	24	
CTF1-400	610	1.52	45	
CTF1-500	1830	2.23	29	
CTF1-600	2557	2.21	17	11
pym-CTF500	208	1.77	502	
pym-CTF600	689	2.15	124	
lut-CTF300	486	2.14	57	
lut-CTF350	635	2.41	66	
lut-CTF400	968	2.72	53	
lut-CTF500	1680	2.58	27	
lut-CTF600	2815	2.52	23	
HAT-CTF- 450/600	1090	4.8	110	12
TPI-1	809	1.25	30.9	
TPI-2	796	1.23	33.5	_
TPI-3	40	0.43	35.1	_
TPI-4	245	1.11	46.2	13
TPI-5	201	0.96	46.2	_
TPI-6	510	1.10	33.8	_
TPI-7	< 10	1.10	55.5	_
TPI-1@IC	1053	2.11	80	
TPI-2@IC	814	1.43	151	14
TPI-3@IC	963	1.44	77	
NOP-1	749	1.08	32.8	
NOP-2	803	1.42	34.1	15
NOP-3	894	1.41	33.8	
NOP-4	428	0.84	31.9	
NOP-5	613	0.73	30.5	
NOP-6	720	0.50	29.2	16
NOP-19	982	1.57	53 f	10
NOP-20	952	1.64	81 ^f	
NOP-21	565	1.57	68 <i>^f</i>	
TFM-1	791	0.91	-	17
2	-	1.53	49	
3	646	1.65	34	
4	1266	2.06	20	10
2C	427	2.95	33	10
3C	1173	3.03	31	
4C	1316	3.55	22	
TSP-1	562.5	1.90	32 ^f	10
TSP-2	913.0	2.60	38 ^f	17
TCMP-0	963	1.34	9.6	20

TNCMP-2	995	1.45	7.6	
TCMP-3	691	1.26	25.2	
TCMP-5	494	0.68	17.0	
MCTP-1	1452	2.70	15.4 ^e	21
MCTP-2	859	2.46	68.6 ^e	21
PCTP-1	1200	3.25	46.1 ^e	22
PCTP-2	523	2.34	31.6 ^e	
APOP-1	1298	2.69	20.3	
APOP-1-OH	875	1.86	26.0	
APOP-1-ONa	760	1.71	29.2	
APOP-1-F	724	2.02	31.8	23
APOP-2	906	1.30	20.2	
APOP-3	1402	2.59	26.0	
APOP-4	833	1.64	23.3	
bpim-CTF400	786	2.46	32	This
bpim-CTF500	1556	2.77	23.5	work

^aCO₂ adsorption at 1 bar and in 298 K. ^bCO₂ adsorption at 1 bar in 293 K. ^cCO₂ adsorption at 1 bar in 303 K. ^dCO₂/N₂

selectivity by using IAST method at 298 K eCO2/N2 selectivity by using Henry method at 303K. fCO2/N2 selectivity by

using IAST method at 273 K

Table S4. Characteristics of reported POPs**original information from ESI data of ref. 7.

COFs	BET surface area (m ² g ⁻¹)	CO ₂ ^a (mmol g ⁻¹)	CO_2/N_2^b	Ref.
CMPs	522-1043	0.93 - 1.18	-	25
JUC-Z2	2034	1.56	-	26
polyamine particles	246	2.20	-	27
HMPs	437-726	1.41 - 1.70	-	28
PAFs (41~44)	515-1119	1.24 - 2.26	-	29
POF1B ~ POF3B	608-917	1.48 - 2.16	-	30
$\frac{\text{SMPs-1} \sim \text{SMPs-14}}{\text{MOD}}$	757-1421	1.73 - 2.61	-	31
HCPs	3-1684	0.25 - 1.68	-	32
ACMPS	46-629	0.5/-1.08	-	33
Networks	540.060	0.91 - 1.49	-	34 25
BI Pc	1360 2244	0.25 1.68	-	35
PAEs (32)	1230-1679	0.23 - 1.08	-	30
PI-ADPM	868	1.59		38
PSNs	376-1045	1.11 - 2.23	-	39
ILCOF-1	2273	0.84	-	40
CMPs	772-965	1.61 - 1.80	-	41
TDCOF-5	2497	1.23	-	42
GPOPs	680-1010	1.20 - 1.89	-	43
PIMs	531-771	1.41 - 1.65	-	44
F-MOPs	832-1031	1.32 - 1.68	-	45
SNU-C1-va	595	2.31	-	46
SNU-C1-sca	830	3.14	-	40
PAF-16-2	979	1.18	-	47
PAFs	2246-5460	1.09 - 1.82	-	48
MOPs (A-B1 ^{II} ~B3 ^{III})	142-614	1.70 - 2.01	-	49
Networks	618-1980	1.12 - 1.99	-	50
NPTNs	1055-1558	1.34 - 1.84	-	51
PBIs	62-85	0.22 - 1.56	-	52
STPIs	4-541	1.09 - 2.30	-	53
JUC-12	750	1.70	-	54
TEPOs	485-592	0.83 - 1.21	-	55
ТВ-МОР	694	2.57	-	56
SMPIs	23-574	1.43 - 1.87	-	57
TzTz-POPs	299-488	1.30 - 1.50	-	58
CP-CMPs	847-2241	1.53 - 2.44	-	59
PTPAs	544-1557	0.82 - 1.56	-	60
TBCs	540-917	1.09 - 1.79	-	61

Cz-POFs	671-2065	1.32 - 3.05	-	62
HP _E -CMP	662	1.70	-	63
PPFs (1~4)	419-1740	1.43 - 3.57	-	64
Networks	1147-1236	1.66 - 1.71	-	65
ACOF-1	1176	2.05	-	66
PIs	26-744	1.23 - 2.02	-	67
MPIs	586-1454	1.65 - 2.14	-	68
BILP-10(C1)	924	1.41	15.8	69
HCPs	742-847	1.14 - 1.70	19-27	70
Networks	653-4077	1.08 - 2.20	8.7-19.5	71
CC-6	99	0.89	11	72
PPN-6s	555-1740	1.23 - 3.59	13-442	73
ZCs	-	0.10 - 0.36	38-138	74
Cs (C5~C7)	-	0.18 - 0.20	38.0-73.0	75
Fs (F1~F3)	-	0.10 - 0.23	42-213	76
NPAF	1790	2.33	89	77
PAF-18s	981-1121	1.50 - 2.02	20-65	78
azo-COPs	11.1-729.6	1.12 - 1.53	175-325	79, 80
MOP Networks	333-1015	1.24 - 2.27	16-26	81
COPs (1~2)	158-167	0.93 - 1.36	7.9-25	82
IBN9-NCs	890-1181	1.81 - 4.50	-32	83
PIs	506-568	1.00 - 1.41	12-27	84
MCs (0~100)	7-1289	0.35 - 1.61	15.9-49.2	85
CE-Ps	195-630	0.67 - 1.07	14.2-37.8	86
PDVBs	19-825	0.35 - 1.49	-373	87
BILP-101	107.2	1.30	100	88
Oz-COP	553.4	1.47	40	89
PAF-56P	747-1082	1.70 - 1.90	39.5-40	90
MBMOPs	962-1044	0.43 - 0.48	3-15	91
H ₂ P-COFs	0.094-1340	0.50 - 3.16	-140	92
TB-COPs	439-712	0.12 - 0.34	46-54	93
Azo-POFs	622-755	0.15 - 0.16	31-34	04
Fne-POFs	370-953	0.75 - 1.25	19.4-79.8	94
PAFs (33~35)	1096	0.23 - 1.14	-	95
PPN-101	859-1452	2.46 - 2.70	15.4-68.6	96
BILPs (10~13)	862-1235	0.23 - 0.30	27-35	97
ALPs (1~4)	791-983	1.12 - 1.13	3.4-4.8	98
POPs (1,2)	243-1022	1.10 - 2.20	41-80	99

CBZ, DBT, DBF, IN, BT, BF	523-1200	0.03 - 0.30	31.6-46.1	100
POPs (1~2)		1.62 - 1.9.	600-3000	101
PPNs (80~81)	1261-1306	2.75 - 3.30	31-39	102
$\mathbf{D}\mathbf{H}\mathbf{D}_{\mathbf{r}}\left(2,7\right)$	500 1125	1.09 2.50	22.71	103,
$DILPS\left(2^{\sim}\right)$	599-1155	1.98 - 3.39	32-71	104
POP-diimides	560-960	1.50 - 2.07	12.5-30	105
DBMOP-6	750	-	-	106
OMPM-1	-	2.01	-	107
NPOFs (4, NO ₂ , NH ₂)	337-1249	1.40 - 1.88	16-66	108
PPNs (1~3)	1249-2840	-	-	109
PAF-30	540	1.55	-	110
COPs (1~4)	827-3041	0.90 - 1.40	2-30	111
BILP-1	1172	2.98	7	112
P-1, P-2	611-1222	1.27-1.64	8-29	113
SNW-1	-	2.10	25	114
NPIs (1~3)	291-721	1.09 - 1.80	15.7-45.2	115
PSN-3	865	2.00	69	116
PPN-6-SO ₃ NH ₄	593	3.50	196	117
Ni-Pors (1~4)	778-1711	2.26 - 3.13	-	118
PECONFs (1~4)	-851	1.34 - 2.47	41-51.1	119
PAF-26s	430-717	1.47 - 1.65	27-113	120
TTPPs	593-606	1.04 - 1.56	20.5-22.0	121
PINs	28-458	0.70 - 1.22	40-41	122

12. References

- S. Hug, M. B. Mesch, H. Oh, N. Popp, M. Hirscher, J. Senker and B. V. Lotsch, J. Mater. Chem. A, 2014, 2, 5928-5936.
- 2. X. Liu, H. Li, Y. Zhang, B. Xu, S. A, H. Xia and Y. Mu, Polym. Chem., 2013, 4, 2445-2448.
- 3. A. Bhunua, V. Vasylyeva and C. Janiak, Chem. Commun., 2013, 49, 3961-3963.
- 4. A. Bhunua, I. Boldog, A. Möller and C. Janiak, J. Mater. Chem. A, 2013, 1, 14990-14999.
- 5. Y. Zhao, K. X. Yao, B. Teng, T. Zhang, and Y. Han, Energy Environ. Sci., 2013, 6, 3684-3692.
- 6. K. Wang, H. Huang, D. Liu, C. Wang, J. Li, and C. Zhong, Environ. Sci. Technol., 2016, 50, 4869-4876.
- H. A. Patel, F. Karadas, J. Byun, J. Park, E. Deniz, A. Canlier, Y. Jung, M. Atilhan and C. T. Tavuz, *Adv. Funct. Mater.*, 2013, 23, 2270-2276.
- 8. C. Gu, D. Liu, W. Huang, J. Liu and R. Yang, Polym. Chem., 2015, 6, 7410-7417.
- 9. L. Tao, F. Niu, C. Wang, J. Liu, T. Wang and Q. Wang, J. Mater. Chem. A 2016, 4, 11812-11820.
- 10. L. Tao, F. Niu, J. Liu, T. Wang and Q. Wang,, RSC Adv., 2016, 6, 94365-94372.
- 11. S. Hug, L. Stegbauer, H. Oh, M. Hirscher and B. V. Lotsch, Chem. Mater., 2015, 27, 8001-8010.
- 12. X. Zhu, C. Tian, G. M. Veith, C. W. Abney, J. Dehaudt and S. Dai, J. Am. Chem. Soc., 2016, 138, 11497-11500.
- 13. M. R. Liebl, and J. Senker, Chem. Mater., 2013, 25, 970-980.
- 14. S. Wu, S. Gu, A. Zhang, G. Yu, Z. Wang, J. Jian and C. Pan, J. Mater. Chem. A, 2015, 3, 878-885.
- S. Xiong, X. Fu, L. Xiang, G. Yu, J. Guan, Z. Wang, Y. Du, X. Xiong and C. Pan, *Polym. Chem.*, 2014, 5, 3424-3431.
- 16. Y. Liu, S. Wu, G. Wang, G. Yu, J. Guan, C. Pan, and Z. Wang, J. Mater. Chem. A, 2014, 2, 7795-7801.
- 17. X. Zhu, C. Tian, S. M. Mahurin, S. –H. Chai, C. Wang, S. Brown, G. M. Veith, H. Luo, H. Liu and S. Dai, *J. Am. Chem. Soc.*, 2012, **134**, 10478-10484.
- 18. H. Lim, M. C. Cha and J. Y. Chang, Macromol. Chem. Phys., 2012, 213, 1385-1390.
- X. Zhu, S. M. Mahurin, S. -H. An, C. -L. Do-Thanh, C. Tian, Y. Li, L. W. Gill, E. W. Hagaman, Z. Bian, J. -H. Zhou, J. Hu, H. Liu and S. Dai, *Chem. Commun.*, 2014, **50**, 7933-7936.
- 20. S. Ren, R. Dawson, A. Laybourn, J. –X. Jiang, Y. Khimyak, D. J. Adams and A. I. Cooper, *Polym. Chem.*, 2012, **3**, 928-934.
- 21. P. Puthiaraj, S. -M. Cho, Y. -R. Lee and W. -S. Ahn, J. Mater. Chem. A, 2015, 3, 6792-6797.
- 22. P. Puthiaraj, S. -S. Kim and W. -S. Ahn, Chem. Eng. J., 2016, 283, 184-192.
- 23. W. -C. Song, X. -K. Xu, Q. Chen, Z. -Z. Zhuang and X. -H. Bu, Polym. Chem., 2013, 4, 4690-4696.
- 24. R. Dawson, D. J. Adams and A. I. Cooper, Chem. Sci., 2011, 2, 1173-1177.
- 25. C. Pei, T. Ben, Y. Cui and S. Qiu, Adsorption, 2012, 18, 375-380.
- 26. H. -B. Wang, P. G. Jessop and G. Liu, ACS Macro Lett., 2012, 1, 944-948.
- 27. Y. Luo, B. Li, W. Wang, K. Wu and B. Tan, Adv. Mater., 2012, 24, 5703-5707.
- 28. L. Li, H. Ren, Y. Yuan, G. Yu and G. Zhu, J.Mater. Chem. A, 2014, 2, 11091-11098.
- 29. A. P. Katsoulidis and M. G. Kanatzidis, Chem. Mater., 2011, 23, 1818-1824.
- B. Li, Z. Guan, X. Yang, W. D. Wang, W. Wang, I. Hussain, K. Song, B. Tan and T. Li, *J. Mater. Chem. A*, 2014, 2, 11930-11939.
- 31. C. F. Martin, E. Stockel, R. Clowes, D. J. Adams, A. I. Cooper, J. J. Pis, F. Rubiera and C. Pevida, *J. Mater. Chem.*, 2011, **21**, 5475-5483.

- 32. J. H. Choi, K. M. Choi, H. J. Jeon, Y. J. Choi, Y. Lee and J. K. Kang, Macromolecules 2010, 43, 5508-5511.
- 33. J. R. Holst, E. Stockel, D. J. Adams and A. I. Cooper, *Macromolecules*, 2010, 43, 8531-8538.
- 34. H. Yu, C. Shen, M. Tian, J. Qu and Z. Wang, Macromolecules, 2012, 45, 5140-5150.
- 35. K. T. Jackson, M. G. Rabbani, T. E. Reich and H. M. El-Kaderi, Polym. Chem., 2011, 2, 2775-2777.
- 36. X. Jing, D. Zou, P. Cui, H. Ren and G. Zhu, J. Mater. Chem. A, 2013, 1, 13926-13931.
- 37. C. Shen, Y. Bao and Z. Wang, Chem. Commun., 2013, 49, 3321-3323.
- 38. G. Li, B. Zhang, J. Yan and Z. Wang, Chem. Commun., 2014, 50, 1897-1899.
- M. G. Rabbani, A. K. Sekizkardes, Z. Kahveci, T. E. Reich, R. Ding and H. M. El-Kaderi, *Chem. Eur. J.*, 2013, 19, 3324-3328.
- 40. Y. Xie, T. -T. Wang, X. -H. Liu, K. Zou and W. -Q. Deng, Nat. Chem., 2012, 4, 1960.
- 41. Z. Kahveci, T. Islamoglu, G. A. Shar, R. Ding and H. M. El-Kaderi, CrystEngComm, 2013, 15, 1524-1527.
- 42. T. Wang, Y. -C. Zhao, M. Luo, L. -M. Zhang, Y. Cui, C. -S. Zhang and B. -H. Han, Polymer, 2015, 60, 26-31.
- 43. H. A. Patel and C. T. Yavuz, Chem. Commun., 2012, 48, 9989-9991.
- 44. Z. -Z. Yang, Y. Zhao, H. Zhang, B. Yu, Z. Ma, G. Ji and Z. Liu, Chem. Commun., 2014, 50, 13910-13913.
- 45. L.-H. Xie and M. P. Suh, Chem. Eur. J., 2013, 19, 11590-11597.
- 46. W. Wang, H. Ren, F. Sun, K. Cai, H. Ma, J. Du, H. Zhao and G. Zhu, Dalton Trans., 2012, 41, 3933-3936.
- 47. T. Ben, C. Pei, D. Zhang, J. Xu, F. Deng, X. Jing and S. Qiu, Energy Environ. Sci., 2011, 4, 3991-3999.
- 48. C. Xu and N. Hedin, J. Mater. Chem. A, 2013, 1, 3406-3414.
- 49. S. Yao, X. Yang, M. Yu, Y. Zhang and J. -X. Jiang, J. Mater. Chem. A, 2014, 2, 8054-8059.
- 50. S. Wu, Y. Liu, G. Yu, J. Guan, C. Pan, Y. Du, X. Xiong and Z. Wang, Macromolecules, 2014, 47, 2875-2882.
- 51. H. Yu, M. Tian, C. Shen and Z. Wang, Polym. Chem., 2013, 4, 961-968.
- 52. C. Zhang, T. -L. Zhai, -J. -J. Wang, Z. Wang, J. -M. Liu, B. Tan, X. -L. Yang and H. -B. Xu, *Polymer*, 2014, 55, 3642-3647.
- 53. B. Liu, T. Ben, J. Xu, F. Deng and S. Qiu, New J. Chem., 2014, 38, 2292-2299.
- 54. S. Qiao, W. Huang, Z. Du, X. Chen, F. -K. Shieh and R. Yang, New J. Chem., 2015, 39, 136-141.
- 55. X. Zhu, C. -L. Do-Thanh, C. R. Murdock, K. M. Nelson, C. Tian, S. Brown, S. M. Mahurin, D. M. Jenkins, J. Hu, B. Zhao, H. Liu and S. Dai, *ACS Macro Lett.*, 2013, **2**, 660-663.
- 56. Y. Yang, Q. Zhang, Z. Zhang and S. Zhang, J. Mater. Chem. A, 2013, 1, 10368-10374.
- 57. X. Zhu, C. Tian, T. Jin, J. Wang, S. M. Mahurin, W. Mei, Y. Xiong, J. Hu, X. Feng, H. Liu and S. Dai, *Chem. Commun.*, 2014, **50**, 15055-15058.
- 58. M. Yu, X. Wang, X. Yang, Y. Zhao and J. -X. Jiang, Polym. Chem., 2015, 6, 3217-3223.
- 59. X. Yang, S. Yao, M. Yu and J. -X. Jiang, Macromol. Rapid Commun., 2014, 35, 834-839.
- X. Wang, Y. Zhao, L. Wei, C. Zhang, X. Yang, M. Yu and J. -X. Jiang, *Macromol. Chem. Phys.*, 2015, 216, 504-510.
- 61. X. Zhang, J. Lu and J. Zhang, Chem. Mater., 2014, 26, 4023-4029.
- 62. X. Liu, S. A, Y. Zhang, X. Luo, H. Xia, H. Li and Y. Mu, RSC Adv., 2014, 4, 6447-6453.
- 63. Y. Zhu, H. Long and W. Zhang, Chem. Mater., 2013, 25, 1630-1635.
- 64. Y. Zhang, Y. Li, F. Wang, Y. Zhao, C. Zhang, X. Wang and J. -X. Jiang, Polymer, 2014, 55, 5746-5750.
- 65. Z. Li, X. Feng, Y. Zou, Y. Zhang, H. Xia, X. Liu and Y. Mu, Chem. Commun., 2014, 50, 13825-13828.
- 66. C. Shen and Z. Wang, J. Phys. Chem. C, 2014, 118, 17585-17593.
- 67. G. Li and Z. Wang, Macromolecules, 2013, 46, 3058-3066.
- 68. T. E. Reich, S. Behera, K. T. Jackson, P. Jena and H. M. El-Kaderi, J. Mater. Chem., 2012, 22, 13524-13528.

- 69. Y. Luo, S. Zhang, Y. Ma, W. Wang and B. Tan, Polym. Chem., 2013, 4, 1126-1131.
- 70. R. Dawson, E. Stockel, J. R. Holst, D. J. Adams and A. I. Cooper, Energy Environ. Sci., 2011, 4, 4239-4245.
- 71. S. Jiang, J. Bacsa, X. Wu, J. T. A. Jones, R. Dawson, A. Trewin, D. J. Adams and A. I. Cooper, *Chem. Commun.*, 2011, **47**, 8919-8921.
- 72. W. Lu, J. P. Sculley, D. Yuan, R. Krishna, Z. Wei and H. -C. Zhou, Angew. Chem., Int. Ed., 2012, 51, 7480-7484.
- 73. Y. Jin, B. A. Voss, A. Jin, H. Long, R. D. Noble and W. Zhang, J. Am. Chem. Soc., 2011, 133, 6650-6658.
- 74. Y. Jin, B. A. Voss, R. D. Noble and W. Zhang, Angew. Chem., Int. Ed., 2010, 122, 6492-6495.
- 75. Y. Jin, B. A. Voss, R. McCaffrey, C. T. Baggett, R. D. Noble and W. Zhang, Chem. Sci., 2012, 3, 874-877.
- 76. D. E. Demirocak, M. K. Ram, S. S. Srinivasan, D. Y. Goswami and E. K. Stefanakos, J. Mater. Chem. A, 2013, 1, 13800-13806.
- 77. H. Ma, H. Ren, X. Zou, F. Sun, Z. Yan, K. Cai, D. Wang and G. Zhu, J. Mater. Chem. A, 2013, 1, 752-758.
- 78. H. A. Patel, S. H. Je, J. Park, Y. Jung, A. Coskun and C.T Yavuz, Chem. Eur. J., 2014, 20, 772-780.
- 79. H. A. Patel, S. H. Je, J. Park, D. P. Chen, Y. Jung, C. T. Yavuz and A. Coskun, Nat. Commun., 2013, 4, 1357.
- R. Dawson, L. A. Stevens, T. C. Drage, C. E. Snape, M. W. Smith, D. J. Adams and A. I. Cooper, J. Am. Chem. Soc., 2012, 134, 10741-10744.
- H. A. Patel, F. Karadas, A. Canlier, J. Park, E. Deniz, Y. Jung, M. Atilhan and C. T. Yavuz, *J. Mater. Chem.*, 2012, 22, 8431-8437.
- 82. Y. Zhao, L. Zhao, K. X. Yao, Y. Yang, Q. Zhang and Y. Han, J. Mater. Chem., 2012, 22, 19726-19731.
- A. Laybourn, R. Dawson, R. Clowes, J. A. Iggo, A. I. Cooper, Y. Z. Khimyak and D. J. Adams, *Polym. Chem.*, 2012, 3, 533-537.
- 84. R. Dawson, T. Ratvijitvech, M. Corker, A. Laybourn, Y. Z. Khimyak, A. I. Cooper and D. J. Adams, *Polym. Chem.*, 2012, **3**, 2034-2038.
- 85. H. Yu, C. Shen and Z. Wang, ChemPlusChem, 2013, 78, 498-505.
- 86. D. Lee, C. Zhang and H. Gao, Macromol., Chem. Phys., 2015, 216, 489-494.
- 87. A. K. Sekizkardes, J. T. Culp, T. Islamoglu, A. Marti, D. Hopkinson, C. Myers, H. M. El-Kaderi and H. B. Nulwala, *Chem. Commun.*, 2015, **51**, 13393-13396.
- 88. D. Ko, H. A. Patel and C. T. Yavuz, Chem. Commun., 2015, 51, 2915-2917.
- 89. L. Meng, X. Zou, S. Guo, H. Ma, Y. Zhao and G. Zhu, ACS Appl. Mater. Interfaces, 2015, 7, 15561-15569.
- 90. J. -X. Hu, H. Shang, J. -G. Wang, L. Luo, Q. Xiao, Y. -J. Zhong and W. -D. Zhu, *Ind. Eng. Chem. Res.*, 2014, 53, 11828-11837.
- 91. N. Huang, R. Krishna and D. Jiang, J. Am. Chem. Soc., 2015, 137, 7079-7082.
- 92. J. Byun, S. -H. Je, H. A. Patel, A. Coskun and C. T. Yavuz, J. Mater. Chem. A, 2014, 2, 12507-12512.
- 93. J. Lu and J. Zhang, J. Mater. Chem. A, 2014, 2, 13831-13834.
- 94. R. Yuan, H. Ren, Z. Yan and A. Wang, Zhu, G., Polym. Chem., 2014, 5, 2266-2272.
- 95. M. Zhang, Z. Perry, J. Park and H. -C. Zhou, Polymer, 2014, 55, 335-339.
- 96. A. K. Sekizkardes, T. Islamoglu, Z. Kahveci and H. M. El-Kaderi, J. Mater. Chem. A, 2014, 2, 12492-12500.
- 97. P. Arab, M. G. Rabbani, A. K. Sekizkardes, T. Islamoglu and H. M. El-Kaderi, *Chem. Mater.*, 2014, 26, 1385-1392.
- 98. Q. -Y. Ma, B. -X. Yang and J. -Q. Li, RSC Adv., 2015, 5, 64163-64169.
- 99. M. Saleh, H. M. Lee, K. C. Kemp and K. S. Kim, ACS Appl. Mater. Interfaces, 2014, 6, 7325-7333.
- 100. V. Guillerm, L. J. Weselinski, M. Alkordi, M. I. H. Mohideen, Y. Belmabkhout, A. J. Cairns and M. Eddaoudi, *Chem. Commun.*, 2014, **50**, 1937-1940.

- 101.L. -B. Sun, A. -G. Li, X. -D. Liu, X. -Q. Liu, D. Feng, W. Lu, D. Yuan and H. -C. Zhou, J. Mater. Chem. A, 2015, 3, 3252-3256.
- 102. M. G. Rabbani, T. E. Reich, R. M. Kassab, K. T. Jackson and H. M. El-Kaderi, *Chem. Commun.*, 2012, **48**, 1141-1143.
- 103. M. G. Rabbani and H. M. El-Kaderi, Chem. Mater., 2012, 24, 1511-1517.
- 104.O. K. Farha, Y. -S. Bae, B. G. Hauser, A. M. Spokoyny, R. Q. Snurr, C. A. Mirkin and J. T. Hupp, *Chem. Commun.*, 2010, **46**, 1056-1058.
- 105.O. K. Farha, A. M. Spokoyny, B. G. Hauser, Y. –S. Bae, S. E. Brown, R. Q. Snurr, C. A. Mirkin and J. T. Hupp, *Chem. Mater.*, 2009, **21** (14), 3033-3035.
- 106.H. Kim, Y. Kim, M. Yoon, S. Lim, S. M. Park, G. Seo and K. J. Kim, J. Am. Chem. Soc., 2010, 132, 12200-12202.
- 107. T. Islamoglu, M. G. Rabbani and H. M. El-Kaderi, J. Mater. Chem. A, 2013, 1, 10259-10266.
- 108. W. Lu, D. Yuan, D. Zhao, C. I. Schilling, O. Plietzsch, T. Muller, S. Brase, J. Guenther, J. Blumel, R. Krishna, Z. Li and H. –C. Zhou, *Chem. Mater.*, 2010, **22**, 5964-5972.
- 109. H. Zhao, Z. Jin, H. Su, J. Zhang, X. Yao, H. Zhao and G. Zhu, Chem. Commun., 2013, 49, 2780-2782.
- 110.Z. Xiang, X. Zhou, C. Zhou, S. Zhong, X. He, C. Qin and D. Cao, J. Mater. Chem., 2012, 22, 22663-22669.
- 111. M. G. Rabbani and H. M. El-Kaderi, Chem. Mater., 2011, 23, 1650-1653.
- 112.S. Qiao, Z. Du and R. Yang, J. Mater. Chem. A, 2014, 2, 1877-1885.
- 113.X. Gao, X. Zou, H. Ma, S. Meng and G. Zhu, Adv. Mater., 2014, 26, 3644-3648.
- 114.G. Li and Z. Wang, J. Phys. Chem. C, 2013, 117, 24428-24437.
- 115.G. Li, B. Zhang and Z. Wang, Macromol. Rapid Commun., 2014, 35, 971-975.
- 116. W. Lu, W. M. Verdegaal, J. Yu, P. B. Balbuena, H. -K. Jeong and H. -C. Zhou, *Energy Environ. Sci.*, 2013, 6, 3559-3564.
- 117.Z. Wang, S. Yuan, A. Mason, B. Reprogle, D. -J. Liu and L. Yu, Macromolecules, 2012, 45, 7413-7419.
- 118. P. Mohanty, L. D. Kull and K. Landskron, Nat. Commun., 2011, 2, 401.
- 119.H. Ma, H. Ren, X. Zou, S. Meng, F. Sun and G. Zhu, Polym. Chem., 2014, 5, 144-152.
- 120.X. Chen, S. Qiao, Z. Du, Y. Zhou and R. Yang, Macromol. Rapid Commun., 2013, 34, 1181-1185.
- 121.N. Popp, T. Homburg, N. Stock and J. Senker, J. Mater. Chem. A, 2015, 3, 18492-18504.
- 122.B. Ashourirad, A. K. Sekizkardes, S. Altarawneh and H. M. El-Kaderi, Chem. Mater., 2015, 27, 1349-1358.