Supporting Information:

Good's Buffer Derived Highly Emissive Carbon Quantum Dots: Excellent Biocompatible Anticancer Drug Carrier

Aneeya K. Samantara, ^{a,b} Santanu Maji,^{c,d}, Arnab Ghosh, ^e Bamaprasad Bag,^{a,b} Rupesh Dash, ^{c*} Bikash Kumar Jena^{a,b*}

^a CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India

^bAcademy of Scientific & Innovative Research (AcSIR), 2 Rafi Marg, New Delhi-110 001, India

^c Institute of Life Sciences, Bhubaneswar 751023, Odisha, India

^d Manipal University, Karnataka, India

^e Institute of Physics, Bhubaneswar 751005, Odisha, India

*Corresponding author: CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India; Institute of Life Sciences, Bhubaneswar 751023, Odisha, India

Email: bikash@immt.res.in; rupesh.dash@gmail.com

Figure S1. UV-Visible spectrum of CDs@HEPES CDs@MES and CDs@BES CDs. The inset is the optical photographs in absence and presence of UV light (365nm) irradiation.

Figure S2. Photoluminescence emission spectrum (E_{ex} =300-500nm) of (A) CDs@MES and (B) CDs@BES.

Name	PLQY (%)	Avg. Life Time(ns)
CDs@HEPES	47.39	5.51
CDs@MES	34.84	5.13
CDs@BES	30.5	3.90

Table 1. Photoluminescence quantum yield and lime time decay of CDs@HEPES, CDs@MES and (B) CDs@BES.

Figure.S3 (A) Photoluminescence emission spectrum (E_{ex} =340nm) at different pH (from 4 to 13) of CDs@HEPES.

Figure.S4 FTIR spectrum of CDs@HEPES.

 $\label{eq:Figure.S5} Figure.S5 \ \mbox{EDX} \ \mbox{spectra showing the elemental composition of } CDs@HEPES$

Figure.S6 UV-Visible absorbance spectrum of CDs@HEPES and CDs@HEPES/DOX. Inset is the optical photograph of CDs@HEPES and CDs@HEPES/DOX in room light and 365nm UV-light illumination.

Figure.S7 Normalised photoluminescence emission spectra of CDs@HEPES/DOX at 340nm and 490 nm excitation.