Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Multicolour fluorescent carbon nanoparticle probes for live cell imaging cum dual palladium and mercury sensor

Vinay Sharma,¹ Anoop Kumar Saini² and Shaikh M. Mobin^{*1, 2, 3}

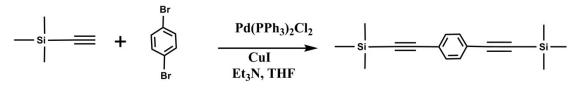
¹Centre for Biosciences and Bio-Medical Engineering, Indian Institute of Technology Indore, Simrol, Indore - 452020, India.

²Discipline of Chemistry, Indian Institute of Technology Indore, Simrol, Indore - 452020, India.

³Centre for Material Science and Engineering, Indian Institute of Technology Indore, Simrol, Indore – 452020, India.

Email: xray@iiti.ac.in

Quantum yield calculations:


The quantum yield of **CNP** was calculated using quinine sulphate as a reference (QY= 54%). The fluorescence and absorbance values were compared. Quinine sulfate was dissolved in $0.1M H_2SO_4$ (refractive index (η):1.33), and the **CNP** were dissolved in deionized water (η : 1.33). Quantum yield was calculated using following formulae

$$\Phi = \Phi_r (S/S_r) (A_r/A) (\eta^2 / \eta_r^2)$$

Here Φ is the quantum yield, S is the measured integrated emission intensity band area, η is the refractive index, and A is the optical density. The subscript *r* represents the reference fluorophore of known quantum yield.

Model sonogashira reaction

The sonogashira reaction was carried out as per scheme 2.¹ Impure reaction product was used for leftover Pd detection.

ethynyltrimethylsilane 1,4-dibromobenzene

1,4-bis((trimethylsilyl)ethynyl)benzene

Scheme 2

	Avg. life time (ns)	χ ²	τ1 (ns)	τ2 (ns)	τ3 (ns)	α1	α2	α3
CNP	7.95	1.032	4.58	9.17	18.3	0.24	0.51	0.25
CNP-Pd ²⁺	7.94	1.057	3.05	13.2	14.1	0.19	0.55	0.26
CNP-Hg ²⁺	2.53	1.47	3.5	7.08	0.16	0.27	0.18	0.55

Table S1: TCSPC data of CNP, CNP-Pd²⁺, CNP-Hg²⁺.

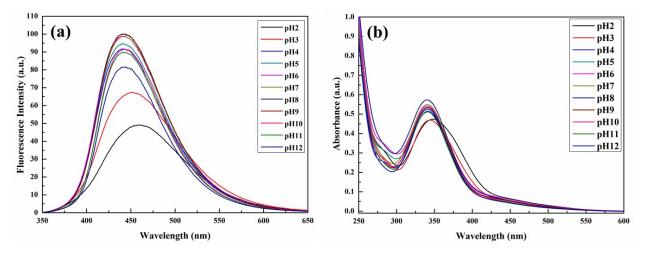
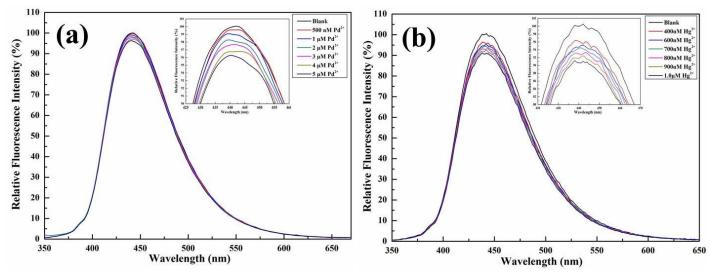
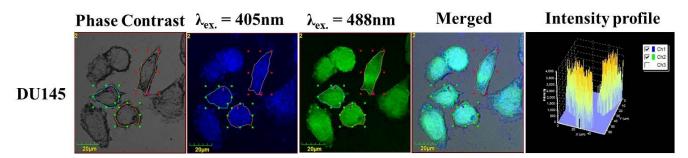




Fig. S1 (a) Emission spectra and (b) Absorption spectra of CNP at different pH.

Fig. S2 Fluorescence quenching of **CNP** in presence of Noble metal Pd and Hg. (a-b) In presence of Pd^{2+} (500nM-5µM). (c-d) In presence of Hg^{2+} (400nM-1.0µM)

Fig. S3 The confocal microscopy images of DU145 cells treated with **CNP** showing intracellular localization of **CNP**.

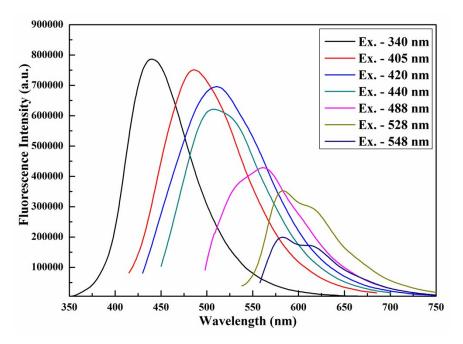


Fig. S4 Excitation tuned emission spectra of CNP.

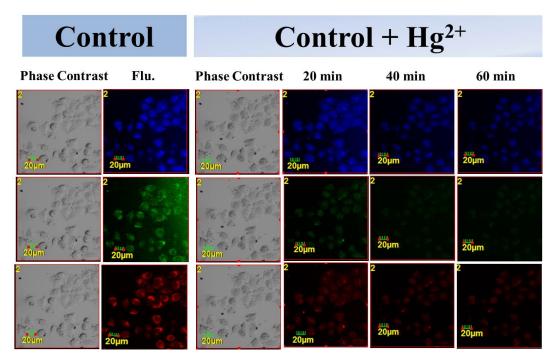


Fig. S5 The confocal microscopy images of A375 cells treated with CNP (*control*), followed by further incubation with Hg^{2+} at different time interval.

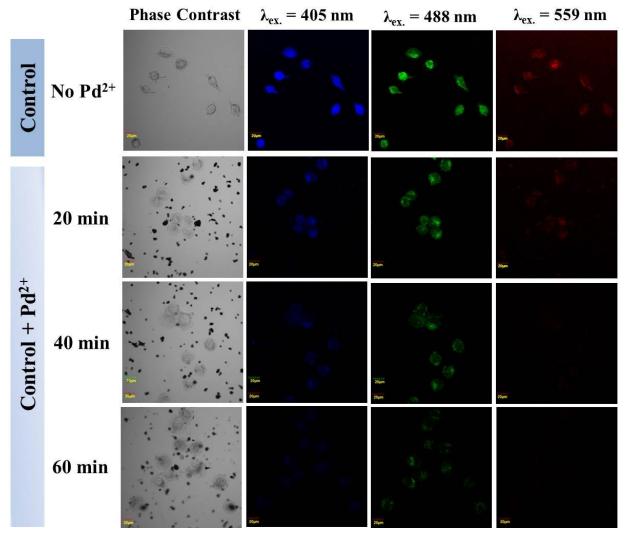
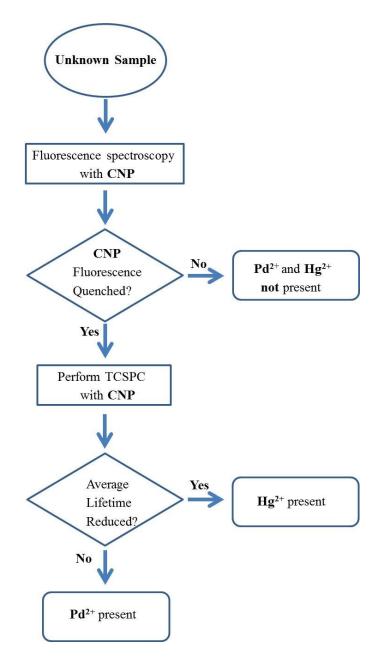



Fig. S6 The confocal microscopy images of DU145 cells treated with CNP (*control*), followed by further incubation with Pd^{2+} at different time interval, showing different areas of cell suspension.

Flow chart S1: Schematic representation showing method to identify Pd^{2+} and Hg^{2+} individually.

SV 1: Two channel confocal (50 scans) of CNP treated DU145 cells.

References

1 K. Sonogashira, Y. Tohda and N. Hagihara, *Tetrahedron Lett.*, 1975, 16, 4467–4470.