Supporting information for:

Effective motor neuron differentiation of hiPSCs on a patch made of crosslinked monolayer gelatin nanofibers

Yadong Tang^a, Li Liu^b, Junjun Li^b, Leqian Yu^b, Francesco Paolo Ulloa Severino^c, Li Wang^a, Jian Shi^a, Xiaolong Tu^a, Vincent Torre^c, Yong Chen^{a,b,d*}

^a Ecole Normale Supérieure-PSL Research University, Département de Chimie,
Sorbonne Universités - UPMC Univ Paris 06, CNRS UMR 8640 PASTEUR, 24, rue
Lhomond, 75005 Paris, France
^b Institute for Integrated Cell-Material Science, Kyoto University, Kyoto 606-8507,
Japan
^c Scuola Internazionale Superiore di Studi Avanzati - via Bonomea, 265 - 34136
Trieste, Italy
^d Center for Quantitative Biology and School of Physics, Peking University, Beijing,
100871, China

* Corresponding author. E-mail: yong.chen@ens.fr

Figure S1:

Fig. S1 Pore size distribution of gelatin nanofibers after crosslinking, showing pore sizes less than 8 μ m, which would support cell culture with large permeability.