# Graphene quantum dots as selective fluorescence sensor for the detection of L-ascorbic acid and acid phosphatase in biological fluid via Cr(VI)/Cr(III)-modulated redox reaction

Fanping Shi,<sup>a</sup> Yu Zhang,<sup>a</sup> Weidan Na,<sup>a</sup> Xinyang Zhang,<sup>b</sup> Yan Li <sup>a</sup> and Xingguang Su\*<sup>a</sup>

<sup>a</sup> Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.

\*E-mail address: <u>suxg@jlu.edu.cn</u> Tel.: +86 431 85168352

<sup>b</sup> State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.



**Fig.S1** Fluorescence spectra of the GQDs in the presence of different concentrations of  $Cr^{3+}$ . The concentrations of  $Cr^{3+}$  were 0, 0.5, 1, 2, 5, 10, 15, 20, 35, 50, 75, 100, 150, 200,300,400 and 500  $\Box$  mol L<sup>-1</sup>, respectively. Inset: Plot of PL intensity of GQDs versus the concentration of  $Cr^{3+}$  (from 0 to 500  $\Box$  mol L<sup>-1</sup>). Tris-HCl buffer solution (10 mmol L<sup>-1</sup>, pH 6.2) incubation for 10 minutes.



Fig.S2 PL excitation and emission spectra of the GQDs and UV-Vis absorption of Cr(VI).



**Fig.S3** The influence of ionic strength on the quenching performance of AA to Cr(VI)-GQDs system.

| Sensing system                                 | Linear range<br>(µmol mL <sup>−1</sup> ) | Detection limit<br>(µmol mL <sup>-1</sup> ) | Reference |
|------------------------------------------------|------------------------------------------|---------------------------------------------|-----------|
| CuInS <sub>2</sub> quantum dots                | 0.25-200                                 | 0.05                                        | 1         |
| Nitrogen-Doped Carbon Nanoparticles            | 0.2-150                                  | 0.05                                        | 2         |
| CdTe/CdS/ZnS core/shell/shell QDs              | 8-100                                    | 1.8                                         | 3         |
| Protein-modified Au nanoclusters               | 1.5-10                                   | 0.2                                         | 4         |
| G-C <sub>3</sub> N <sub>4</sub> /Cr(VI) system | 0.5-200                                  | 0.13                                        | 5         |
| CQDs/AuNCs                                     | 0.15-15                                  | 0.105                                       | 6         |
| GQDs/Cr(VI) as a redox active sensor           | 0.5-250                                  | 0.28                                        | This work |

## Table S1. Comparison of reported fluorescent methods for AA detection with the present

#### method

| Туре             | Sensing system                                           | Linear<br>range<br>(mU mL <sup>-1</sup> ) | Detection<br>limit<br>(mU mL <sup>-1</sup> ) | Reference    |
|------------------|----------------------------------------------------------|-------------------------------------------|----------------------------------------------|--------------|
| Colorimetric     | Au-NPs incubating with NaCl                              | 600-7000                                  | 600                                          | 7            |
| Electrochemistry | Planar Chip Biosensors for<br>Potentiometric Immunoassay | 0.01–4.3                                  | 0.01                                         | 8            |
|                  | Anionic water soluble polyfluorene derivative            | 0-28nM                                    | 4nM                                          | 9            |
| Fluorescence     | Cationic conjugated polyelectrolyte (PPE4+)              | 0-20nM                                    | 0.17nM                                       | 10           |
|                  | Cationic squaraine (SQ) dyes                             | 0-533nM                                   | 4.9nM                                        | 11           |
|                  | Carbon Quantum Dots                                      | 18.2-1300                                 | 5500                                         | 12           |
|                  | Cr(VI)-GQDs/AAP system as a redox active sensor          | 0.02-3<br>(0.084-<br>13nM)                | 0.0089<br>(0.037nM)                          | This<br>work |

## Table S2. Comparison of performance of different methods for ACP detection

### Reference

- 1. S. Liu, J. Hu and X. Su, *Analyst*, 2012, **137**, 4598-4604.
- 2. X. Zhu, T. Zhao, Z. Nie, Y. Liu and S. Yao, *Analytical Chemistry*, 2015, **87**, 8524-8530.
- 3. S. Huang, F. Zhu, Q. Xiao, W. Su, J. Sheng, C. Huang and B. Hu, *RSC Advances*, 2014, 4, 46751-46761.
- 4. X. Wang, P. Wu, X. Hou and Y. Lv, *Analyst*, 2013, **138**, 229-233.
- M. Rong, L. Lin, X. Song, Y. Wang, Y. Zhong, J. Yan, Y. Feng, X. Zeng and X. Chen, Biosensors and Bioelectronics, 2015, 68, 210-217.
- W.-J. Niu, D. Shan, R.-H. Zhu, S.-Y. Deng, S. Cosnier and X.-J. Zhang, *Carbon*, 2016, 96, 1034-1042.
- 7. C. K. Tagad, S. G. Sabharwal and R. Aiyer, 2015.
- 8. A. H. Kamel, H. R. Galal and A. A. Hanna, Int. J. Electrochem. Sci, 2014, 9, 5776-5787.
- 9. A. K. Dwivedi and P. K. Iyer, *Analytical Methods*, 2013, 5, 2374.
- Y. Xie, Y. Tan, R. Liu, R. Zhao, C. Tan and Y. Jiang, ACS Applied Materials & Interfaces, 2012, 4, 3784-3787.
- Y. Xu, B. Li, L. Xiao, J. Ouyang, S. Sun and Y. Pang, *Chem Commun (Camb)*, 2014, **50**, 8677-8680.
- 12. Z. Qian, L. Chai, Q. Zhou, Y. Huang, C. Tang, J. Chen and H. Feng, *Anal Chem*, 2015, **87**, 7332-7339.