Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Information

Partially PEGylated dendrimer-entrapped gold nanoparticles: a promising nanoplatform for highly efficient DNA and siRNA delivery

Wenxiu Hou,^a Ping Wei, ^a Lingdan Kong,^a Rui Guo,^a Shige Wang,^{b*} Xiangyang Shi^{*, a, c}

^a College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai

201620, People's Republic of China

^b College of Science, University of Shanghai for Science and Technology, Shanghai 200093,

People's Republic of China

^c CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9000-390

Funchal, Portugal

* To whom correspondence should be addressed. E-mail: <u>xshi@dhu.edu.cn</u> (X. Shi) or <u>sgwang@usst.edu.cn</u> (S. Wang).

Figure S1. ¹HNMR spectra of (a) G5.NH₂-*m*PEG2K₁₀ and (b) G5.NH₂-*m*PEG5K₁₀ dendrimers.

Figure S2. UV-vis spectra of partially PEGylated Au DENPs.

Figure S3. Electrophoretic mobility retardation assay of vector/siRNA polyplexes under various N/P ratios. M: siRNA marker; lane 1: siRNA alone; lane 2: N/P = 0.125:1; lane 3: N/P = 0.25:1; lane 4: N/P = 0.5:1; lane 5: N/P = 1:1; lane 6: N/P= 2:1; and lane 7: N/P =5:1. G5.NH₂, H1, H2, S1, and S2 were used as vectors, respectively.

Figure S4. Electrophoretic mobility retardation assay of (a) $G5.NH_2$ -*m*PEG2K₁₀/pDNA and (b) $G5.NH_2$ -*m*PEG5K₁₀/pDNA polyplexes under various N/P ratios. M: DNA marker; lane 1: pDNA alone; lane 2: N/P = 0.125:1; lane 3: N/P = 0.25:1; lane 4: N/P = 0.5:1; lane 5: N/P = 1:1; lane 6: N/P = 2:1; and lane 7: N/P = 5:1.

Figure S5. (a) Mean particle size and (b) zeta potential of PEGylated G5.NH₂/pDNA polyplexes under different N/P ratios. (c) the hydrodynamic size of H2/siRNA polyplex under different time points. (d) TEM image of the H2/siRNA polyplex at an N/P ratio of 5:1. In panel a-c, data was represented as mean \pm SD, n=3).

Figure S6. MTT viability assay of HeLa cells treated with PEGylated G5.NH₂ at different concentrations (mean \pm SD, n=3).

Figure S7. Luciferase gene transfection efficiency of PEGylated G5.NH₂/pDNA polyplexes in HeLa cells at N/P ratios of 1:1, 2.5:1, 5:1 and 10:1, respectively (mean \pm SD, n =3).

Figure S8. Luciferase gene transfection efficiency of vectors/DNA polyplexes in HeLa cells at an N/P ratio of 5:1 (mean \pm SD, n =3). Statistical differences between PEGylated Au DENPs (H1, H2, S1, and S2, respectively) versus {(Au⁰)₅₀-G5.NH₂} at an N/P ratio of 5:1 was compared.

Figure S9. Confocal microscopic images of HeLa cells treated with (a) $G5.NH_2$ -*m*PEG2K₁₀/Cy3-DNA and (b) $G5.NH_2$ -*m*PEG5K₁₀/Cy3-DNA polyplexes at an N/P ratio of 5:1.

Figure S10. Confocal microscopic images of HeLa cells treated with different vector/Cy3-siRNA polyplexes at an N/P ratio of 5:1 after 2 h incubation. Control cells without treatment (cell) and naked siRNA without vectors (siRNA) were used as controls. G5.NH₂, H1, H2, S1, and S2 were used as vectors, respectively.