Supporting information

pH-responsive nanocontainer based on hydrazone- bearing hollow silica nanoparticles for targeting tumor therapy

Liangliang Dai, Qingfeng Zhang, Xinkun Shen, Qiang Sun, Caiyun Mu, Hao Gu, Kaiyong Cai*

Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China

* Corresponding author: Prof. Dr. Kaiyong Cai

College of Bioengineering

Chongqing University,

Chongqing 400044,

P. R. China

Tel: +86-23-65102507

Fax: +86-23-65102877

E-mail: kaiyong_cai@cqu.edu.cn

List of Contents

Figure S1. FTIR spectra of different HMSNs	S3	
Figure S2. Quantification analysis of endocytosis	S5	
Figure S3. Endocytosis efficiency of HMSNs-PA-HA detected by CLSM	S6	
Figure S4. Flow cytometry analysis	S7	
Table S1. BET and BJH parameters of different HMSNs	\$8	
Table S2. Zeta-potentials of different HMSNs	S9	
References		-S9

Figure S1. The FTIR spectra of HMSNs (a), HMSNs-NH₂ (b), HMSNs-PA (c), HMSNs-PA-HA (d), and HA-NHNH₂ (e), respectively.

As shown in Figure S1 a, the native HMSNs shows the intrinsic characteratic paeks, in which 471 cm⁻¹ (Si-O bending), 800 cm⁻¹ (Si-O-Si bending), 962 cm⁻¹ (Si-OH bending) and 1090 cm⁻¹ (Si-O stretching), respectively.^{S1, S2} After modification with APTS, distinctive absorption peaks of -NH₂ (1642 cm⁻¹ and 1556 cm⁻¹) were observed in the spectrum of HMSNs-NH₂ (Figure S1, b),^{S2} suggesting the successful grafting of APTS to HMSNs. Following conjugation with PA molecules, the distinctive characteratic peak of -CH₃ at 1398 cm⁻¹ appeared in the spectrum of HMSNs-PA (Figure S1, c). It was contributed to the succesful introduction of PA molecules. Meanwhile, functionlized HA molecular (HA-NHNH₂) shows a broad bond at 3435 cm⁻¹ (O-H stretching), a shoulder peak at 2930 cm⁻¹ (C-H stretching), and the distinctive absorption peak at 1729 cm⁻¹ (C=O) in the spectra of HA-NHNH₂ (Figure S 1e). After HA-NHNH₂ was conjugated into HMSNs-PA, the producted HMSNs-PA-HA not only exhibit typical bonds at 3435 cm⁻¹ (O-H) and 2930 cm⁻¹ (C-H stretching) from HA, but also the similar absorption peaks with that of HMSNs-PA with slight shift, moreover, the carboxyl groups signals (1729 cm⁻¹) was disappeared (Figure S 1d), which was consistent with a previous study, ^{S3} suggesting that the HA was successful conjugated into HMSNs, in other words, HMSNs-PA-HA was successfully synthesized.

Figure S2. The quantification analysis of nanoparticles in HepG2 cells after treatments with FITC, HMSNs@FITC and HMSNs-PA-HA@FITC (0.12 mg/mL) for 12 and 24 h, respectively. Error bars represent means \pm SD (n=4), **p < 0.01.

Figure S3. The quantification analysis of nanoparticles in HepG2 cells pretreated with HA, A3D8 or not for 2 h and then incubated with 0.12 mg/mL HMSNs-PA-HA@FITC at 37 °C for 4 h. Error bars represent means \pm SD (n=4), **p < 0.01.

Figure S4. FCM quantitative analysis of HepG2 cells treated with TCPS (control, a), HMSNs-PA-HA (b), DOX (c), HMSNs@DOX (d), and HMSNs-PA-HA@DOX (e), respectively.

Table S1.	BET a	and BJH	parameters	s of HMSNs,	HMSNs-PA	and HMSN	s-PA-HA

nanoparticles.							
Materials	S _{BET} (m²/g)	V _P (cm ³ /g)	BJH W _{BJH} (Å)				
HMSNs	907.3481	0.895968	26.6768				
HMSNs-PA	497.6089	0.435486	18.3639				
HMSNs-PA-HA	190.5998	0.26985	13.4501				

S8

Materials	Zeta potential (mV)
HMSNs	-13.6±3.37
HMSNs-NH ₂	24.4±4.04
HMSNs-PA	8.6±4.17
HMSNs-PA-HA	-16.2±2.83

Table S2. Zeta potentials of different HMSNs nanoparticles.

References

- M. Ma, H. R. Chen, Y. Chen, K. Zhang, X. Wang, X. Z. Cui, J. I. S, J. Mater. Chem., 2012, 22, 5615-5621.
- S2. L. L. Dai, J. H.Li, B. L.Zhang, J. J.Liu, Z. Luo, K. Y. Cai, *Langmuir*, 2014, **30**, 7867-7877.
- S3. M. H. Yu, S. Jambhrunkar, P. Thorn, J. Z. Chen, W. Y. Gu, C. Z. Yu, Nanoscale, 2013, 5,178-183.