Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Size of silk fibroin β -sheet domains affected by Ca²⁺

N. Drnovšek^a, R. Kocen^a, A. Gantar^a, M. Drobnič-Košorok^b, A. Leonardi^c I. Križaj^{c, d}, A. Rečnik^a, Saša Novak^{a, c}

^a Department for Nanostructured Materials, Jožef Stefan Institute, Ljubljana, Slovenia

^b Institute of Physiology, Pharmacology and Toxicology, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia

^c Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia

^{*d*} Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia

^e Jožef Stefan International Postgraduate School, Ljubljana, Slovenia

Table S1: Mass spectrometric analysis of sericin in the silk fibroin preparation. Silk sericin extract and fibroin preparation indepicted amounts were hydrolysed in solution with trypsin. Peptide mixtures were analysed on ESI ion trap mass spectrometer1200 series HPLC-Chip-LC/MSD Trap XCT Ultra. Identification of proteins relies on the MS/MS-derived peptide sequences thatare listed.

Sample	Quantity analysed [µg]	Identified proteins	Swiss-Prot accession number	Mascot protein score	Peptide sequence	Z	Calculated peptide mass
silk	0.175	sericin 1	SERI1_BOMMO	135	ASSTIYADKDQIR	2	1467.7445
sericin					ASSTIYADKDQIR	3	1467.7445
extract					YTSGPEGVSYSGR	3	1359.6181
		fibroin light chain	FIBL_BOMMO	110	SIAILNVQEILK	2	1340.8155
					YIAQAASQVHV	2	1186.6220
	0.35	sericin 1	SERI1_BOMMO	239	ASSTIYADKDQIR	2	1467.7445
					KASSTIYADKDQIR	3	1595.8394
					SDAASSEDGFWWW NR	2	1813.7570
					YTSGPEGVSYSGR	2	1359.6181
		fibroin light chain	FIBL_BOMMO	200	AWDYVDDTDKSIAIL NVQEILK	3	2549.3143
					SIAILNVQEILK	2	1340.8155
					YIAQAASQVHV	2	1186.6220
		fibroin heavy chain	FIBH_BOMMO	52	DASGAVIEEQITTK	2	1460.7358
	1.75	sericin 1	SERI1_BOMMO	194	NDNVFVYR	2	1026.5008
					SDAASSEDGFWWW NR	2	1813.7570
					SDAASSEDGFWWW NRRK	3	2097.9532
		fibroin light chain	FIBL_BOMMO	153	AWDYVDDTDKSIAIL NVQEILK	3	2549.3143
					SIAILNVQEILK	2	1340.8155
					YIAQAASQVHV	2	1186.6220
		fibroin heavy chain	FIBH_BOMMO	72	DASGAVIEEQITTK	2	1460.7358
silk	35	fibroin light chain	FIBL_BOMMO	123	SIAILNVQEILK	2	1340.8155
fibroin					YIAQAASQVHV	2	1186.6220
		fibroin heavy chain	FIBH_BOMMO	64	DASGAVIEEQITTK	2	1460.7358

Fig. S1 Microstructures of dried SF scaffolds with the highest concentration of CaCl₂: (a) Ca300 and (b) Ca500. Threads were formed instead of walls resulting in destruction of the scaffolds during ethanol incubation.

 Table S2
 The secondary structure peak assignments for amide I band frequencies.

Wavelength (cm ⁻¹)	Type of secondary structure	Ref.
1715	β-turns	1
1697-1703	β -sheet (weak)	2
1686-1696	β -turns and bends	2
1681-1696	β -turns and bends	3
1671-1685	β -turns and bends	2
1671-1679	β -turns and bends	3
1668-1671	β -turns and bends	3
1663-1670	β -turns and bends	2
1656-1662	α-helices	2
1655	α-helices	4
1654	Random coil	5
1650	Random coil	4
1647-1655	Random coil	2
1641-1647	Random coil	4
1640-1648	Random coil	3
1638-1646	Random coil random coils/extended chains	2, 6
1638	Random coil	5
1628-1637	β -sheets	2-4, 7

1623	Antiparallel β-sheet	2
1621-1627	β -sheet	2, 3
1620	Parallel β -sheet	2
1618	β-sheet	8
1616-1637	β-sheet	9
1616-1621	Aggregate b strand/ β -sheet weak	10
1605-1615	(Tyr) side chains aggregated strands	10

Fig. S2 Fitted amide I band of fibroin scaffolds: Ca0, Ca15, Ca30, Ca70, Ca140, Ca300, BG5 and BG10. New peak arising at around 1715 cm⁻¹ is marked with green * and is more clearly presented in the inset in Graph Ca140 that shows second derivative FTIR spectra at wavelengths around 1715 cm⁻¹ where the peak representing β -turns increases with Ca concentration.

References

- 1. G. Qin, X. Hu, P. Cebe and D. L. Kaplan, *Nature communications*, 2012, **3**, 1003-1003.
- 2. X. Hu, D. Kaplan and P. Cebe, *Macromolecules*, 2006, **39**, 6161-6170.
- 3. D. Wilson, R. Valluzzi and D. Kaplan, *Biophys J*, 2000, **78**, 2690-2701.
- 4. H. Zhang, L.-I. Li, F.-y. Dai, H.-h. Zhang, B. Ni, W. Zhou, X. Yang and Y.-z. Wu, *Journal of Translational Medicine*, 2012, **10**, 117.
- 5. P. Taddei and P. Monti, *Biopolymers*, 2005, **78**, 249-258.
- 6. S. S. Silva, D. Maniglio, A. Motta, J. F. Mano, R. L. Reis and C. Migliaresi, *Macromolecular Bioscience*, 2008, **8**, 766-774.
- 7. Q. Zhang, Y. H. Zhao, S. Q. Yan, Y. M. Yang, H. J. Zhao, M. Z. Li, S. Z. Lu and D. L. Kaplan, *Acta Biomaterialia*, 2012, **8**, 2628-2638.
- 8. M. A. Koperska, D. Pawcenis, J. Bagniuk, M. M. Zaitz, M. Missori, T. Łojewski and J. Łojewska, *Polymer Degradation and Stability*, 2014, **105**, 185-196.
- 9. J. Brown, C.-L. Lu, J. Coburn and D. L. Kaplan, Acta Biomaterialia, 2015, **11**, 212-221.
- 10. X. Chen, Z. Shao, N. S. Marinkovic, L. M. Miller, P. Zhou and M. R. Chance, *Biophysical Chemistry*, 2001, **89**, 25-34.