A combined experimental and computational study of the substituent effect on photodynamic efficacy of amphiphilic Zn(II)phthalocyanines

Anzhela Galstyan,*a,b Kristina Riehemann,b Michael Schäfersa,c,d

and Andreas Fausta,c,d

^aEuropean Institute for Molecular Imaging, Waldeyerstr.15, 48149 Münster (Germany), anzhela.galstyan@wwu.de

^bPhysikalisches Institut and CeNTech, Westfälische Wilhelms-Universität Münster, Heisenbergstrasse 11, 48149 Münster (Germany).

^c Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster

^d DFG EXC 1003 'Cells in Motion' Cluster of Excellence, University of Münster, Germany

Supporting Information

Table of Contents

1.	Photophysical Data	S2
	1.1 Absorption spectra	S2
	1.2 Excitation and emission spectra	S3
	1.3 Time resolved luminescence decays	S4
	1.4 Determination of singlet molecular oxygen quantum yields	S7
2.	Partition coefficient	S8
3.	Theoretical studies	S8
4.	In vitro studies	S10
5.	Analytical data	S11

1. Photophysical Data

1.1. Absorption spectra

Figure S1. UV-Visible spectra of **Pc1-p**, **Pc2-p**, **Pc1-d** and **Pc2-d** in different solvents (CHCl₃, DMF and H₂O) at different concentrations (1 to 10 μ M). The inset of each spectrum plots the Q-band absorbance *vs* the concentration of the Zn(II)phthalocyanine and the line represents the best-fitted straight line.

1.2. Excitation and emission spectra

Figure S2. Excitation, fluorescence and singlet oxygen emission spectra of **Pc1-p** (λ_{exc} =610nm, λ_{em} =760nm) and **Pc2-p** (λ_{exc} =625nm, λ_{em} =784nm) in CHCl₃ and **Pc1-d** (λ_{exc} =610nm, λ_{em} =760nm) and **Pc2-d** (λ_{exc} =625nm, λ_{em} =785nm) in DMF.

1.3. Time resolved luminescence dacays

rarameter	value	COTIL: Lower	OOTIL: Upper	Conn. Estimation
A ₁ [Cnts]	11470.9	-59.9	+59.9	Fitting
τ1 [ns]	2.75108	-0.00987	+0.00987	Fitting
Bkgr. Dec [Cnts]	0.477	-0.431	+0.431	Fitting
Bkgr. IRF [Cnts]	45.49	-2.10	+2.10	Fitting
Shift IRF [ns]	-0.1187	-0.0134	+0.0134	Fitting

Figure S3. Time-resolved luminescence decay of **ZnPc1-p** in CHCl₃ including the instrument response function and the residuals (λ_{exc} =635 nm) and fitting parameters including pre-exponential factors and confidence limits.

Figure S4. Time-resolved luminescence decay of **ZnPc2-p** in CHCl₃ including the instrument response function and the residuals (λ_{exc} =635 nm) and fitting parameters including pre-exponential factors and confidence limits.

Parameter	Value	Conf. Lower	Conf. Upper	Conf. Estimation
A ₁ [Cnts]	11342.5	-58.4	+58.4	Fitting
τ1 [ns]	2.50436	-0.00919	+0.00919	Fitting
Bkgr. Dec [Cnts]	0.415	-0.459	+0.459	Fitting
Bkgr. IRF [Cnts]	49.09	-2.36	+2.36	Fitting
Shift IRF [ns]	-0.02066	-0.00300	+0.00300	Fitting

Figure S5. Time-resolved luminescence decay of **ZnPc1-d** in DMF including the instrument response function and the residuals (λ_{exc} =635 nm) and fitting parameters including pre-exponential factors and confidence limits.

Parameter	Value	Conf. Lower	Conf. Upper	Conf. Estimation
A1 [Cnts]	16067.1	-80.6	+80.6	Fitting
τ ₁ [NS]	2.44662	-0.00687	+0.00687	Fitting
Bkgr. Dec [Cnts]	0.087	-0.479	+0.479	Fitting
Bkgr. IRF [Cnts]	11.44	-2.15	+2.15	Fitting
Shift IRF [ns]	-0.9254	-0.0120	+0.0120	Fitting

Figure S6. Time-resolved luminescence decay of **ZnPc2-d** in DMF including the instrument response function and the residuals (λ_{exc} =635 nm) and fitting parameters including pre-exponential factors and confidence limits.

Figure S7. Time-resolved luminescence decay of **ZnPc1-d** in H₂O including the instrument response function and the residuals (λ_{exc} =635 nm) and fitting parameters including pre-exponential factors and confidence limits.

Figure S8. Time-resolved luminescence decay of **ZnPc2-d** in H₂O including the instrument response function and the residuals (λ_{exc} =635 nm) and fitting parameters including pre-exponential factors and confidence limits.

Figure S9. Phosphorescence spectrum of the photogenerated singlet oxygen for tetra-*t*-butylphthalocyaninato zinc(II) (a), **Pc1-p** (b) and **Pc2-p** (c) in CHCl₃ for three concentrations. Plots of the emission intensity against the fraction of absorbed light tetra-*t*-butylphthalocyaninato zinc(II) (balck), **Pc1-p** (blue) and **Pc2-p** (red). The line represents the best-fitted straight line.

Figure S10. Phosphorescence spectrum of the photogenerated singlet oxygen for tetra-*t*-butylphthalocyaninato zinc(II) (a), **Pc1-d** (b) and **Pc2-d** (c) in DMF for three concentrations. Plots of the emission intensity against the fraction of absorbed light tetra-*t*-butylphthalocyaninato zinc(II) (balck), **Pc1-d** (red) and **Pc2-d** (blue). The line represents the best-fitted straight line.

2. Partition coefficients

Figure S11. Absorption spectra of Pc1-d (a) and Pc2-d (b) from water phase – red line and 1-octanol phase – black line.

3. Binding to Human Serum Albumin

Figure S12. Absorption spectra of Pc1-d (a) and Pc2-d (b) in the absence (black line) and presence of HSA (red line).

4. Theoretical calculations

Table S1. List of selected molecular orbital energies and HOMO–LUMO energy gaps [eV] for the model system **Pc1-m** and **Pc2-m**.

Orbital	Pc1-m	Pc2-m
LUMO + 5	-0.7878	-1.0928
LUMO + 4	-0.8014	-1.2267
LUMO + 3	-0.8931	-1.2278
LUMO + 2	-1.1886	-1.2498
LUMO + 1	-2.8107	-2.7239

LUMO	-2.8216	-2.7451
НОМО	-4.9498	-4.7971
HOMO – 1	-6.3645	-5.8145
HOMO – 2	-6.4959	-5.8456
HOMO – 3	-6.5095	-6.1650
HOMO – 4	-6.5490	-6.4252
HOMO – 5	-6,8113	-6.7204
HOMO-LUMO gap	2.1282	2.0520

Figure S13. Optimized structures of different conformers of the model system **Pc1-m** and **Pc2-m** and the calculated relative energies (kcal mol⁻¹) using B3LYP/6-311G(d,p).

5. In vitro studies

Cor	mpound	Pos. Control	H ₂ O Control	Neg. Control	10µg/ml	5µg/ml	1µg/ml
	irradiated	0.00 (±0.16)	99.31 (±2.88)	100.00 (±1.86)	17.28 (±3.60)	57.92 (±12.74)	93.97 (±4.06)
PC1-0	dark	0.00 (±0.04)	106.15 (±9.11)	100.00 (±7.65)	97.92 (±8.63)	104.87 (±9.38)	108.98 (±14.78)
	irradiated	0.00 (±0.24)	104.56(±6.28)	100.00(±8.92)	2.43 (±1.95)	16.38 (±5.21)	77.98 (±7.39)
Pc2-d	dark	0.00 (±0.15)	111.61(±15.73)	100.00(±9.16)	88.86 (±7.89)	95.80(±11.20)	100.68(±3.90)

Table S2. Summary of the irradiation experiments.

Pc1-d 0mg/ml 24h after irradiation

Pc2-d 0mg/ml 24h after irradiation

Pc2-d 10mg/ml 24h after irradiation

Figure S14. Morphological changes after PDT for COLO-818 cell line incubated with 10 mg/ml **Pc1-d** (b) and **Pc2-d** (d) 24h after irradiation. Negative controls for **Pc1-d** (a) and **Pc2-d** (c).

6. Analytical Data

Figure S15. MALDI-MS spectra of **Pc1-p** measured in trans-2-[3-(4-tert-Butylphenyl)-2-methyl-2-propenylidene]malononitrile DCTB matrix (CHCl₃). Insert: measured and calculated isotope pattern.

Figure S16. MALDI-MS spectra of **Pc2-p** measured in trans-2-[3-(4-tert-Butylphenyl)-2-methyl-2-propenylidene]malononitrile DCTB matrix (CHCl₃). Insert: measured and calculated isotope pattern.

Figure S17. MALDI-MS spectra of **Pc1-d** measured in 2,5-Dihydroxybenzoic acid DHB matrix (H_2O/ACN). Insert: measured isotope pattern.

Figure S18. MALDI-MS spectra of **Pc2-d** measured in 2,5-Dihydroxybenzoic acid DHB matrix (H_2O/ACN). Insert: measured isotope pattern.

Figure S19. FT-IR spectra of Pc1-p, Pc1-d, Pc2-p and Pc2-d.

<u>1H NMR spectra show broad chemical shifts likely due to the self-aggregation at NMR</u> <u>concentration as well as presence of four positional isomers.</u>