Electronic Supplementary Information

Pyrano[3,2-*c*]julolidin-2-one: A Novel Class of Fluorescent Probe for Ratiometric Detection and Imaging of Hg²⁺ in Live Cancer Cells

Ajay Kumar Jha,^a Shahida Umar,^a Rakesh Kumar Arya,^b Dipak Datta,^bAtul Goel*^{a,c}

^aFluorescent Chemistry Lab, Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, E-mail: atul goel@cdri.res.in

Fax: +91-522-2771941; Tel.: +91-522-2772450

^bBiochemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.

^cAcademy of Scientific and Innovative Research, New Delhi 110001, India

**Correspondence should be addressed to A.G. (atul_goel@cdri.res.in).*

Table of Contents

Absorption and Fluorescence spectra of compound **3** (**PYJO1**)

Fluorescence response of PYJO4 in the presence of $Hg^{2+},\,Hg^{+}\,,$ and Hg^{0}

Time dependent fluorescence response of **PYJO4** in the presence of Hg^{2+} .

Representative ratiometric fluorescent probes for Hg²⁺ based on organic fluorophores for sensing and bio-imaging.

Competitive experiment between **PYJO4**, Cysteine (Cys), Methionine (Met) and Glutathione (GSH).

Dipstick Study using **PYJO4** and different concentrations of Hg²⁺ ions.

Linear variation of intensity ratio (I_{530}/I_{665}) of **PYJO4** on increasing concentration of Hg(II).

Variation of intensity ratio (I_{530}/I_{665}) of **PYJO4** on increasing concentration of Hg(II) for the determination of detection limit.

Job's plot showing 1:1 stoichiometry between **PYJO4** and Hg(II).

Species distribution curve between **PYJO4** and Hg(II) favouring the formation of a 1:1 complex

formation of a 1:1 complex.

Plot of fluorescence intensity change at 665 nm of **PYJO4** (4×10^{-5} M) with increasing Hg²⁺ ($0-2 \times 10^{-4}$ M).

Fluorescence spectra of **PYJO4** (4×10^{-5} M) showing reversibility in the presence of KI.

pH study of **PYJO4.**

Computed molecular orbital energy diagrams and isodensity surface plots of **PYJO4** as obtained from TDDFT calculations.

Effect of solvent polarity on absorption and emission spectra of **PYJO4**.

Fluorescence spectra of **PYJO4** ($4x10^{-5}$ M) at excitation (a) 405nm and (b) 488 nm in methanol/HEPES buffer (7:3) at pH 7.2 .

Time-resolved fluorescence decay plot of **PYJO4** ($4x10^{-5}$ M) only and in the presence of added Hg⁺² ions in methanol/HEPES buffer (7:3).

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of synthesized compounds PYJO1 , PYJO2,

PYJO3 and PYJO4.

Cartesian coordinates (Å) of PYJO4 optimized at B3LYP/6-31G (d, p).

References

Figure S1 (a) Absorption and (b) Fluorescence spectra of compound PYJO1 ($4x10^{-5}$ M) in methanol/HEPES buffer (7:3) at pH 7.2.

Figure S2 Fluorescence response of **PYJO4**($4x10^{-5}M$) in the presence of Hg²⁺($2x10^{-4}M$), Hg⁺($2x10^{-4}M$), and Hg⁰($2x10^{-7}M$, poor solubility¹) in methanol/HEPES buffer (7:3) at pH 7.2.

Table	S1.	Representative	ratiometric	fluorescent	probes	for	Hg ²⁺	based	on	organic	fluorophores	for
sensing	g anc	l bio-imaging.										

Journal	Solvent system	LOD	Cell Imaging	Mechanism of sensing
<i>Chem. Eur. J.</i> 2015, 21 , 13201	HEPES/EtOH 6:4 v/v	60 nm	FL A549 cells	 Au ³⁺ & Hg ²⁺
Inorg. Chem. 2012, 51 , 1769	CH ₃ CN-aq.HEPES buffer (1 mM pH=7.2:1:1 $y(y)$	0.35 ppb	A431 cells	$\frac{\text{RET}}{\text{Cr}^{3+} \& \text{Hg}^{2+}}$
J. Am. Chem. Soc. 2007, 129 , 5910	(50 mM HEPES, pH 8)	50 nm		PET
Tetrahedron 2010, 66 , 9762	CH ₃ CN/H ₂ O (9:1, v/v)		MCF-7 cells	FRET
Analyst, 2015, 140 , 2778	10 mM PBS buffer (1% CH ₃ CN, pH=7.4)	7.8 nm	Hela cell	ESIPT
Org. Lett., 2009, 11, 2740	H ₂ O-CH ₃ CN (1:1, v/v)	0.1 ppm	Pseudomonas putida	RET
J. Org. Chem. 2006, 71, 4308	0.05 M phosphate-buffered water solution (pH =7.5)			ICT
Chem. Commun., 2009, 3175	water	10 ⁻⁶ M		ICT
J. Mater. Chem., 2005, 15, 2778	(50 mM HEPES, 100 mM KCl)			PET
ACS Appl. Mater. Interfaces. 2010, 2 , 1066	THF	5×10 ⁻⁷ M		ICT
Spectrochimica Acta Part A: 2016, 165 , 99	$H_2O/CH_3CN (9:1, v/v;)$ TrisHCl 50 mmol L ⁻¹ ; pH = 7.0)	0.008 μΜ	HeLa cells	FRET
Sensors and Actuators B: Chemical. 2016, 230 , 639	DMF- H_2O (3:1, v/v) with HEPES (pH=7.4, 10 mM)	$5.22 \times 10^{-7} \mathrm{M}$		ICT
Analyst, 2013, 138 , 2654	Tris-HCl/CH ₃ CN (10 mM, pH =7.4, 1 : 1, v/v)	$2.8 \times 10^{-8} \mathrm{M}$	HeLa cells	PET
Chem. Commun., 2012, 48, 7292	$(0.5\% \text{ CH}_3\text{CN}) \text{ pH} = 7.4$		C8D1A cells	ICT
<i>Chem. Commun.</i> , 2012, 48 , 8371	PBS buffer solutions (pH = 7.4, containing 0.5% DMSO)	4.9 nM	Hep G2 cells	ICT
Dalton Trans., 2013, 42, 12093	CH ₃ CN–H ₂ O (98 : 2 v/v).	41 nM		LMCT/MLCT
New J.Chem., 2014, 38 , 109	PBS buffer solution (pH = 7.4 , containing 1% CH ₃ CN	3.6 nM	SMMC-7721 cells	ICT
Org. Biomol. Chem., 2015, 13 , 3032	Water aggregate based	72.7 nM		ICT, Hg ²⁺ & I ⁻
<i>RSC Adv.</i> , 2014, 4 , 14919	2% EtOH, 1 mM, pH 7.4;	90 ppb	Hela cell	FRET, Hg ²⁺ & S ²⁻
J. Mater. Chem., 2012, 22, 4003	10 mM HEPES buffer solution (pH 7.0)	96 nM	HeLa cells	ICT
Org. Lett., 2011, 13 , 3422	PBS buffer (pH 7.4) containing ~1% CH ₃ CN.	20 ppb		ESIPT
Org. Lett., 2012, 14, 1986	(MeOH/H ₂ O, 2:98, v/v)	1.6× 10 ⁻⁸ M		ICT/ ESIPT
Org. Lett., 2011, 13 , 5774	DMF/MeOH (98:2) v/v			FRET Hg ²⁺ & Fe ²⁺
Org. Lett., 2010, 12 , 5310	HEPES buffer (0.01 M, pH =7.4) (0.05%DMSO, v/v)	10 ppb		
Org. Lett., 2008, 10, 4891	THF/H ₂ O (9:1, v/v)	$1 \times 10^{-7} \text{M}$		ICT
Angew. Chem. Int. Ed., 2008, 47 , 8025	$C_2H_5OH/H_2O(8:2)$, pH= 7.0		MCF-7	FRET
Org. Lett., 2012, 14, 2564	THF/H ₂ O (1/1) v/v)			ICT
This Work	Methanol/HEPES (7/3,v/v) pH=7.2	1.14 ppb	Significant ratiometric bioimaging in MCF-7 cells	TICT Operated First ratiometric Hg ²⁺ sensing rotor

Figure S3 Time dependent fluorescence response² of **PYJO4** ($4x10^{-5}$ M) in the presence of Hg²⁺ (5 equiv.) in methanol/HEPES buffer (7:3) at pH 7.2.

Figure S4 Competitive experiment between **PYJO4**, Cysteine (Cys), Methionine (Met) and Glutathione (GSH). Variation in the fluorescence intensity of **PYJO4** (4.0×10^{-5} M) in presence of Hg²⁺, Cys (10 mM), Met (10 mM) and GSH (10 mM). λ_{ex} = 405nm. [Hg²⁺] = 2×10⁻⁴ M.

Dip-stick experiment

In "Dip-stick" experiment with different metal ions, the TLC plates were saturated with **PYJO4** $(4x10^{-5} \text{ M})$ solution in methanol and air-dried. Aqueous solutions of different metal perchlorates $(2x10^{-4} \text{ M})$ were prepared. The TLC plates coated with **PYJO4** were subsequently dipped in aqueous solutions of different metal ions and were observed by a naked eye under hand held UV lamp (365 nm).

To check the sensitivity of the **PYJO4** coated test strips, the TLC plates were prepared using more dilute solution of **PYJO4** (2μ M) in methanol and air-dried. These plates were then dipped in aqueous solutions of different concentrations of Hg²⁺ (1μ M- 6μ M) ions and observed by a naked eye under hand held UV lamp (365 nm).

Figure S5 Dip-stick experiment of **PYJO4** (2μ M) with different concentrations of Hg²⁺ ions under UV lamp (365 nm).

Figure S6 Variation of intensity ratio (I_{530}/I_{665}) of of **PYJO4** (4x10⁻⁵ M) on increasing concentration of Hg²⁺.

Figure S7 Linear variation of intensity ratio (I_{530}/I_{665}) of of **PYJO4** (4x10⁻⁵ M) on increasing concentration of Hg²⁺, λ_{ex} = 405nm

Determination of detection limit

The detection limit was calculated based on the fluorescence titration.³ The fluorescence emission spectrum of **PYJO4** was measured by seven times and the standard deviation of blank measurement was achieved. To gain the slope, fluorescence titration was carried out between **PYJO4** (8×10^{-7}) and Hg²⁺ the ratio of the fluorescence intensity at 530 nm to the fluorescence intensity at 665 nm ($I_{530}/_{665}$) was plotted against the concentration of Hg²⁺. So the detection limit was calculated with the following equation:

Detection limit =
$$3\sigma/k$$

Where σ is the standard deviation of blank measurement, k is the slope between the fluorescence intensity ratio versus Hg²⁺ concentration.

Figure S8 Variation of intensity ratio (I_{530}/I_{665}) of **PYJO4** (8x10⁻⁷ M) on increasing concentration of Hg²⁺ for the determination of detection limit, λ_{ex} = 405 nm.

Figure S9 Job's plot showing 1:1 stoichiometry between PYJO4 and Hg²⁺.

Figure S10 Species distribution curve between PYJO4 and Hg²⁺, L:PYJO4.

Determination of association constant

The association constant for 1:1 complex was calculated based on the titration curve of **PYJO4** with Hg²⁺ ions. Association constant was determined by a linear fitting of the data with the following equation

$$1/(Io - I) = \frac{1}{[(Io - I') \times K \times c]} + \frac{1}{(Io - I')}$$

For a 1:1 complex, a straight line would be obtained when $1/(I_o - I)$ is plotted against 1/c,

Where F_o is the fluorescence intensity of analyte in the absence of metal ions, F is the observed fluorescence in each concentration tested, F' is the intensity of analyte at infinite concentration of metal ions, c is the concentration of metal ion, and K is the association constant.⁴

Figure S11 Plot of fluorescence intensity change at 665 nm of **PYJO4** (4×10^{-5} M) with increasing Hg²⁺ ($0-2 \times 10^{-4}$ M).

Figure S12 Fluorescence spectra of **PYJO4** (4×10^{-5} M) with Hg²⁺ (3 equiv.) showing reversibility in the presence of KI (7equiv) in methanol/HEPES buffer (7:3) at pH 7.2.

Figure S13 pH study (pH range 2-11) of PYJO4 (4×10⁻⁵ M) in the absence and presence of Hg²⁺ (5 equiv.). λ_{ex} = 405 nm.

Table S2. Computed molecular orbital energy diagrams and isodensity surface plots of **PYJO4** as obtained from TDDFT calculation and computed values of vertical excitations, oscillator strength (f), assignment, HOMO, LUMO and energy band gap

λ_{max}	f	Assignment	НОМО	LUMO	E _g (eV)
(nm)			(eV)	(eV)	_
513.23	0.2406	HOMO \rightarrow LUMO (99.4%)	-5.549	-2.546	3.003
349.07	0.3183	HOMO-2 → LUMO (97.5%)			
335.41	0.1451	$HOMO-3 \rightarrow LUMO(98.06\%)$			

Table S3 Phtophysical data of PYJO4 in different solvents

solvent	Δf	$\mathbf{PYJO4}\phi_f(\boldsymbol{\%})^{\mathbf{a}}$			
Cyclohexane	0.0014	48			
Toluene	0.0134	46			
1,4- Dioxan	0.0213	40			
Ethyl acetate	0.201	35			
THF	0.2096	21			
DCM	0.2183	28			
DMF	0.2755	11			
Acetone	0.2836	14			
Ethanol	0.2893	8			
Methanol: HEPES (7:3) - 3					
^{<i>a</i>} Fluorescence quantum yield relative to harmine in 0.1M H ₂ SO ₄ as a standard ($\Phi = 45\%$).					

Figure S14 Effect of solvent polarity on absorption and emission spectra of PYJO4.

Figure S15. Time-resolved fluorescence decay plot of PYJO4 ($4x10^{-5}$ M) only and in the presence of added Hg⁺² ions in methanol/HEPES buffer (7:3) at 25 °C using a nano-LED of 390 nm as the light source.

Table S4 Time resolved fluorescence data of **PYJO4** and **PYJO4.Hg**⁺² in methanol/HEPES buffer (7:3) at 25 °C

Entry	λ _{em} (nm)	τ _{av} (ns)	χ2
PYJO4	530	7.08	1.09
PYJO4	665	3.36	1.13
PYJO4 +Hg ⁺²	530	4.52	1.25

Figure S16 Selection of emission channels for biological studies. Fluorescence spectra of **PYJO4** $(4x10^{-5} \text{ M})$ at excitation (a) 405 nm and (b) 488 nm in methanol/HEPES buffer (7:3) at pH 7.2.

¹H NMR (CDCl₃, 400 MHz) and ¹³C NMR (CDCl₃, 100.6 MHz) of compound PYJO1

¹H NMR (CDCl₃, 500 MHz) and ¹³C NMR (CDCl₃, 100.6 MHz) of PYJO4

Cartesian coordinates (Å) of **PYJO4** optimized at B3LYP/6-31G (d, p)

Atom	Х	Y	Z
С	-6.46273120	1.43005739	2.80689421
С	-5.23407067	0.82754007	2.58911488
С	-4.88168688	0.37307414	1.30766934
С	-5.78625534	0.51478515	0.21878234
С	-7.05533330	1.09848561	0.45763675
С	-7.35759231	1.55420228	1.73798659
N	-5.43571780	0.03045255	-1.02631655
С	-6.34562745	0.15472427	-2.16952120
С	-7.31501587	1.32666994	-2.01818163
С	-8.04601190	1.22774760	-0.67757988
С	-3.64698472	-0.34535713	1.07016108
С	-3.21496780	-0.67890178	-0.18795089
С	-4.03815029	-0.21562929	-1.36723546
0	-3.00362020	-0.74187833	2.18695408
С	-1.84051901	-1.53512331	2.16405955
С	-1.39051261	-1.92484685	0.83998859
С	-2.05797074	-1.52011488	-0.32348962
0	-1.32770419	-1.79306591	3.22418475
N	-1.68166841	-1.96582899	-1.58870580
С	-1.29709981	-1.00427192	-2.62275540
С	0.20959429	-0.77543631	-2.73274903
С	-1.20429590	-3.33460943	-1.79245226
0	0.65764015	-0.18591658	-1.50291965

С	1.99791470	-0.23499242	-1.27110586
С	2.31922459	0.42429382	0.06334728
0	2.78470919	-0.71892099	-2.05197536
Ν	3.72090361	0.30551633	0.40782414
С	4.21434431	1.41634363	1.21943112
С	4.07824367	-1.01066661	0.95998867
С	5.52867821	-1.35424380	0.68309319
С	4.36688802	2.71043442	0.43928743
Ν	4.24837555	3.84145487	1.15347524
С	4.42888102	5.00515627	0.51767888
С	4.72151650	5.10888628	-0.84190910
С	4.83325715	3.93034968	-1.57947755
С	4.65479422	2.71036171	-0.93219829
С	5.98847239	-1.45553178	-0.63873257
С	7.32078179	-1.78561299	-0.86010043
С	8.15445292	-1.99809672	0.24028335
С	7.60730814	-1.86743082	1.51414146
Ν	6.32428065	-1.55163841	1.74462081
С	-0.12526866	-2.57225619	0.79742894
Ν	0.92824237	-3.06751752	0.73732809
Н	-6.73058701	1.79483619	3.79249658
Н	-4.52700505	0.69182270	3.39920954
Н	-8.32488218	2.02377070	1.90136022
Н	-5.73921175	0.29098599	-3.07128778
Н	-6.90715230	-0.78247087	-2.29996504
Н	-6.75695115	2.26923727	-2.06751776

Н	-8.02173145	1.31967952	-2.85415458
Н	-8.71572815	0.35577524	-0.69574800
Н	-8.68431778	2.10319095	-0.51832841
Н	-3.60420310	0.69808734	-1.82123883
Н	-4.00438282	-0.99134236	-2.14028738
Н	-1.65622869	-1.35868578	-3.59867486
Н	-1.77372159	-0.04439953	-2.42000377
Н	0.76144834	-1.69967590	-2.91761939
Н	0.41751231	-0.09372291	-3.56640439
Н	-1.49164363	-3.64073944	-2.80500929
Н	-0.12348643	-3.46059286	-1.67863743
Н	-1.69916601	-3.99799019	-1.08165577
Н	2.06002259	1.48346242	-0.04838924
Н	1.62970034	0.01767931	0.82224825
Н	5.20162050	1.12763039	1.59973571
Н	3.59373847	1.62069516	2.10797128
Н	3.90574154	-1.07186113	2.04516179
Н	3.43559469	-1.76070504	0.48916763
Н	4.32799287	5.90156825	1.12776642
Н	4.85247270	6.08230070	-1.30403465
Н	5.05783852	3.96110300	-2.64222139
Н	4.72413360	1.76417090	-1.45719234
Н	5.29548409	-1.27687289	-1.45436722
Н	7.70569648	-1.87867473	-1.87199064
Н	9.20126638	-2.25703629	0.11553853
Н	8.22547909	-2.01998377	2.39733341

References

- 1. H. L. Clever, S. A. Johnson and M. E. Drrick J. Phys. Chem. Ref. Data, 1985, 14, 631.
- X. Shi, H. Wang, T. Han, X. Feng, B. Tong, J. Shi, J. Zhi and Y. Dong J. Mater. Chem., 2012, 22, 19296.
- B. Zhu, C. Gao, Y. Zhao, C. Liu, Y. Li, Q. Wei, Z. Ma, B. Du and X. Zhang Chem. Commun., 2011, 47, 8656.
- 4. M. I. Rodriguez-Cacers, R. A. Agbaria and I. M. Warner J. Fluores. 2005, 15, 185.