Electric Supplementary information

Biodegradable shape memory polymers functionalized with antibiofouling interpenetrating polymer networks

I. Dureamae,^{a,b} M. Nishida,^c T. Nakaji-Hirabayashi,^{a,c*} K. Matsumura^d and H. Kitano^{c,e}

^{a.} Frontier Research Core for Life Sciences, University of Toyama, 3190 Gofuku, Toyama-shi, Toyama 930-8555, Japan

^{b.} Research Center of Micro/Nano Technology, Tokai University, 4-1-1 Kitakaname, Hiratsuka-shi, Kanagawa 259-1292, Japan

^{c.} Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama-shi, Toyama 930-8555, Japan

^{d.} School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi-shi, Ishikawa 923-1292, Japan

^{e.} Institute for Polymer-Water Interfaces, 84 Fukujima, Yatsuo, Toyama-Shi, Toyama 939-2376, Japan

* Corresponding Author: T. Nakaji-Hirabayashi, <u>nakaji@eng.u-toyama.ac.jp</u>

Fig. S1. Synthesis scheme and ¹H-NMR spectrum of the PCLBL copolymer.

Fig. S2. FT-IR spectra of PCL-PU constructed using NH₂-CE.

Fig. S3. DSC thermograms of (a) PCL and PCL-PU at different molar ratios of HDI:PCL:CE (b) 2:1:1 (c) 3:1:2 (d) 4:1:3 (e) 5:1:4, and (f) 6:1:5.

Fig. S4. Weight loss curves and corresponding DTG curves (inset) of (a) PCLBL-PU1, (b) PCLBL-PU2, and (c) PCLBL-PU3 at different heating rates (5–20 °C min⁻¹).

Evaluation of Activation Energy by Ozawa-Flynn-Wall (OFW) Method

The degradation of PCLBL-PUs was studied through non-isothermal measurements at different heating rates. The mass loss and its derivative at different heating rates (β) for PCLBL-PU1, PCLBL-PU2 and PCLBL-PU3 are presented in Fig. S4(a)-(c), respectively.

The OFW plots of $\ln \beta$ vs. 1000/*T* were created using Eq. S1.

$$\ln \beta = \ln \left(\frac{A \times E_{a}}{R}\right) - \ln g(\alpha) - 5.3305 + 1.052 \frac{E_{a}}{RT}$$
(S1)

where α is the conversion, *A* is frequency factor (s⁻¹), *R* is the universal gas constant (8.314×10⁻³ kJ/mol.K), and $g(\alpha)$ is the kinetic model function. Figs. S5(a) – (c) show the OFW plots of ln β vs. 1000/*T* for the thermal degradation of PCLBL-PU1, PCLBL-PU2 and PCLBL-PU3, respectively. The straight lines fitting the data were nearly parallel, especially for PCLBL-PU1, which indicated that the activation energies at different conversions were similar. In addition, the straight line data suggests that this method could be applied to study these samples.

Fig. S5. OFW plots of logarithm β versus 1000*T* for thermal degradation of (a) PCLBL-PU1, (b) PCLBL-PU2, and (c) PCLBL-PU3.

Fig. S6. Mass spectra (m/z) of the degradation products obtained by heating (a) PCLBL-PU1, (b) PCLBL-PU2, and (c) PCLBL-PU3 at 150–450 °C.

Fig. S7. Mass spectra of the volatile products from (a) PCLBL-PU1 at 302 °C, (b) PCLBL-PU2 at 287 °C, and (c) PCLBL-PU3 at 280 °C.

Fig. S8. Contact angles of the surface of the IPN films constructed with PCLBL-PU1 and PCMB. The CMB was polymerized at a concentration of 0, 0.1, 0.5, 1, and 2 M. IPN films obtained after drying (black bar) and immersion in water for 24 h (grid bar) were measured (n = 3).

Fig. S9. Rheological properties of PCLBL-PU sheets interpenetrated (a) without and (b) with PCMB (○ PCLBL-PU1, ◆ PCLBL-PU2, □ PCLBL-PU3).