Supporting Information

Near-Infrared Emissive Lanthanide Hybridized Carbon Quantum Dots for Bioimaging Applications

Fengshou Wu,^{a,b}† Huifang Su,^c† Xunjin Zhu,*^b Kai Wang,^a Zhenfeng Zhang*^c and Wai-Kwok Wong*^b

^a Key Laboratory for Green Chemical Process of the Ministry of Education, Wuhan Institute of Technology, Wuhan, P. R. China.

^b Department of Chemistry, Hong Kong Baptist University, Waterloo Road, Hong Kong, P. R. China.

^c State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine,

Sun Yet-sen University Cancer Center, Guangzhou, P. R. China.

Figure S1. XPS spectra of CQDs

Figure S2. High-resolution XPS spectrum of O1s of Yb-CQDs and Nd-CQDs

Figure S3. Fluorescence spectra of CQDs with different excitation wavelengths

Figure S4. XPS spectra of the control sample of YbCl₃+CQDs after the dialysis.

Figure S5. (a) Visible emission spectrum ($\lambda_{ex} = 360$ nm) and (b) NIR emission spectrum of the control sample by directly adding YbCl₃ into the CQDs solution without dialysis (CQDs+YbCl₃ without dialysis) ($\lambda_{ex} = 420$ nm).

Figure S6. (a) Visible emission spectrum ($\lambda_{ex} = 360 \text{ nm}$) and (b) NIR emission spectrum of the control sample by hydrothermal YbCl₃ and CQDs solution (hydrothermal CQDs+YbCl₃ without dialysis) ($\lambda_{ex} = 420 \text{ nm}$).

Figure S7. (a) Visible emission spectrum ($\lambda_{ex} = 360 \text{ nm}$) and (b) NIR emission spectrum of the control sample by hydrothermal YbCl₃ and CQDs solution and then purified by dialysis (hydrothermal CQDs+YbCl₃ after dialysis) ($\lambda_{ex} = 420 \text{ nm}$).

Figure S8. (a) NIR emission spectrum of YbCl₃ in water ($\lambda_{ex} = 360 \text{ nm}$) and (b) NIR emission spectrum of Yb-CQDs under excitation of 380 nm.