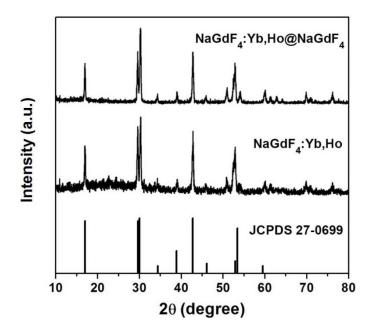
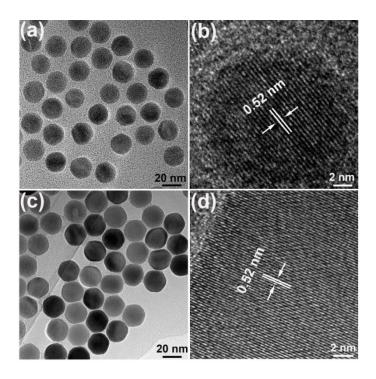
Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2016


Design, fabrication, luminescence and biomedical applications of UCNPs@mSiO₂-ZnPc-CDs-P(NIPAm-MAA) nanocomposite

Jiating Xu,^a Dan Yang,^a Ruichan Lv,^a Bin Liu,^a Shili Gai,^a Fei He,^a Chunxia Li,^b and Piaoping Yang^a*


^a Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China

^b State Key Laboratory of Rare Earth Resource and Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China

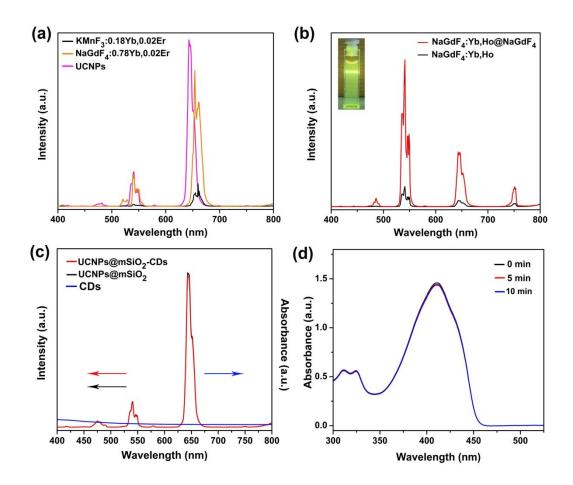
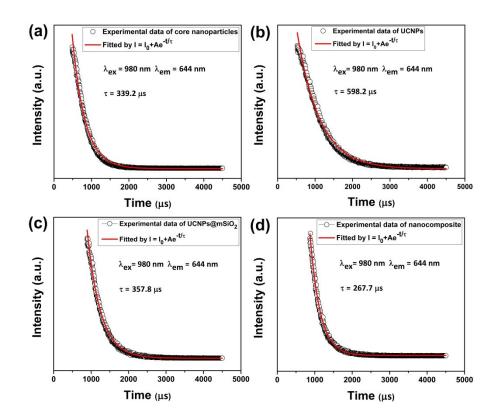
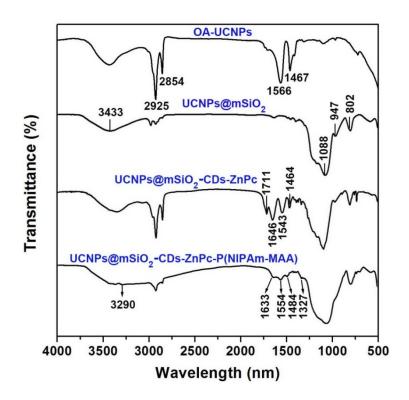
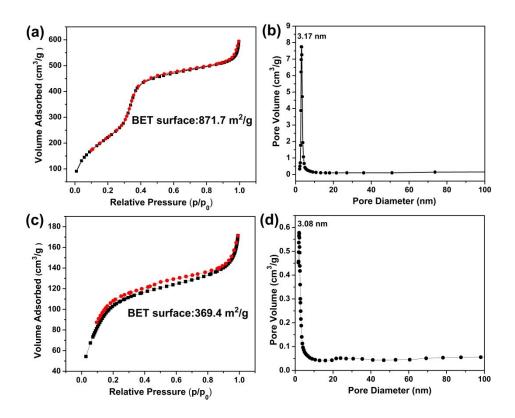
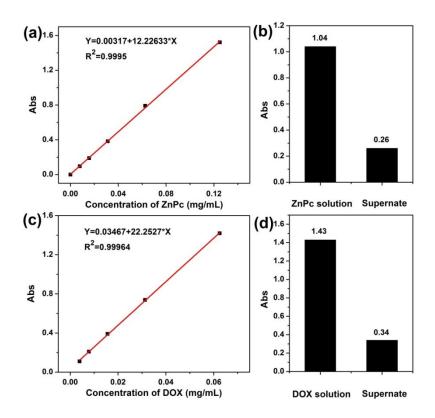

* Corresponding author: E-mail: yangpiaoping@hrbeu.edu.cn (P. Yang)

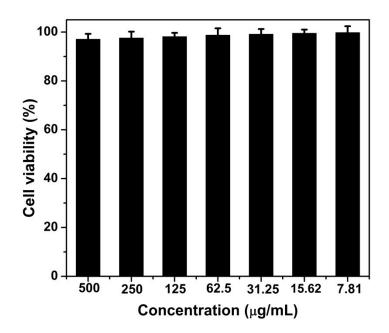
Fig. S1 XRD patterns of NaGdF₄:Yb,Ho core and NaGdF₄:Yb,Ho@NaGdF₄ core-shell structured nanoparticles. The standard data lines of NaGdF₄ (JCPDS No.27-0699) are given for comparison.


Fig. S2 TEM and HRTEM image of NaGdF₄:Yb,Ho (a, b) core and NaGdF₄:Yb,Ho@NaGdF₄ (c, d) core-shell structured nanoparticles.


Fig. S3 UC emission spectra of KMnF₃:Yb,Er, NaGdF₄:Yb,Er and the UCNPs (a); UC emission spectra of NaGdF₄:Yb,Ho@NaGdF₄ core-shell nanoparticles (inset is the corresponding UCL images of core-shell nanoparticles); UC emission spectra of UCNPs@SiO₂ and UCNPs@SiO₂-CDs and UV-vis absorption spectrum of CDs (c); UV-vis absorption spectra of DPBF solutions mixed with UCNPs@mSiO₂-CDs under the irradiation of NIR laser with different times (d).


Fig. S4 TEM images of carbon nanotubes (a) and carbon dots (b). Inset is the simulative structure of carbon nanotubes and carbon dots respectively.


Fig. S5 Decay curves of Ho³⁺ at 644 nm in core nanoparticles (A); core-shell structured UCNPs (B); UCNPs@mSiO₂ (C); UCNPs@mSiO₂ -ZnPc (D) under 980 nm NIR light excitation.


Fig. S6 FT-IR spectra of OA-UCNPs, UCNPs@mSiO₂, UCNPs@mSiO₂-CDs-ZnPc, and UCNPs@mSiO₂-CDs-ZnPc -P(NIPAm-MAA).

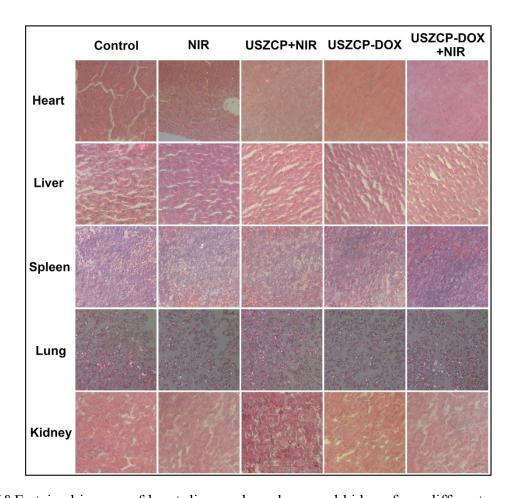

Fig. S7 N₂ adsorption/desorption isotherms and corresponding pore size distribution curves of UCNPs@mSiO₂ (a, b) and UCNPs@mSiO₂-CDs-ZnPc spheres (c, d).

Fig. S8 The standard curve for ZnPc (a) and DOX (c) detection at the absorbance wavelength of 665 nm and 480 nm respectively; the absorbance intensity for their initial solution and supernate before and after drug loading process (b, d)

Fig. S9 L929 fibroblast cell viability after incubating with UCNPs@mSiO₂-P(NIPAm-MAA) nanocomposite for 24 h and quantitative assays by standard MTT method.

Fig. S10 H&E stained images of heart, liver, spleen, lung, and kidney from different groups after 14 days treatment by USZCP nanocomposite.