PCL-PEG graft copolymers with tunable amphiphilicity as efficient drug

delivery systems

A. Al Samad, ^{a,b} A. Bethry, ^a E. Koziolová, ^c M. Netopilík, ^c T. Etrych, ^c Y. Bakkour, ^b J.

Coudane, a F. El Omar, b B. Nottelet a*

^a Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS-Université

Montpellier-ENSCM, Faculté de Pharmacie, 15, avenue Charles Flahault BP14491, 34093

Montpellier cedex 5, France

E-mail: benjamin.nottelet@umontpellier.fr

^b Laboratory of Applied Chemistry, Doctoral School of Sciences and Technology, Lebanese

University, Lebanon

^c Institute of Macromolecular Chemistry AS CR, v.v.i., Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic

Scheme S1. Schematic representation of the preparation of the PCL-*g*-PEG copolymers by thiol-yne approach.

Figure S1. Excitation spectra of pyrene ($\lambda em = 371 \text{ nm}$) as a function of the concentration of PCL-*g*-PEG2k_{3.2}.

 $Figure \ S2a. \ \ \ Fit \ curve \ for \ the \ curcumin \ release \ from \ \ PCL-g-PEG0.7k_{1.9} (software \ Curve \ Expert 1.4)$

Figure S2b. Fit curve for the curcumin release from PCL-g-PEG2k_{2.6} (software Curve Expert1.4)

Figure S2c. Fit curve for the curcumin release from PCL-g-PEG2k_{4.9} (software Curve Expert1.4)

Figure S2d. Extrapolation of fit curves over 100 days for the release curcumin from PCL-g-PEG

Figure S3. Viability of MCF-7 cells in different media. The grey bar represent the control in culture medium, green bars represent the culture medium supplemented with PBS (1.5% to 15%) and purple bars represent the culture medium supplemented with DMSO (0.05% and 0.1%)

Figure S4. Viability of MCF-7 cells in the presence of non-loaded nanoaggregates. The concentration of blank nanoaggregates used in this assay was equal to the concentration of loaded nanoaggregates used to reach curcumin concentrations of 0.18 and 18 μ g/L. (Data are expressed as means \pm SD and correspond to measurements in triplicate)

Copolymer /	PCL-g-PEG0.7k _{1.2}		PCL-g-PEG2k _{5.4}	
Time	Mn (g/mol)	Ð	Mn (g/mol)	Ð
T ₀	19400 ± 1400	2,1 ± 0,2	27000 ± 3700	1,6 ± 0,2
1 W	27000 ± 1150	2,6 ± 0,2	20000 ± 7200	1,5 ± 0,1
	1700 ± 100	1,2 ± 0,2		
1 M	27500 ± 1800	2,8 ± 0,1	17400 ± 5500	1,2 ± 0,1
	1200	1,2	2900 ± 100	1,0 ± 0,1
3 M	16400 ± 500	1,9 ± 0,1	37100 ± 2300	1,4 ± 0,1
	960 ± 60	1,1	2600 ± 100	1,0 ± 0,1
6 M	12800 ± 400	1,6 ± 0,1	26000 ± 4900	1,4
	900 ± 50	1,1	2500 ± 100	1,1

Table S1. SEC analysis of PCL-g-PEG during degradation at 37°c in PBS. (Mn valuesexpressed as means \pm SD and correspond to measurements in triplicate

Drug	Chemical structure	Solubility	logP*
Paclitaxel		1 mg/L Zhang JA. <i>et al. Eur J Pharm Biopharm</i> 2005 , <i>59</i> , 177.	3.95
ABT-199 (Venetoclax)		< 0.4 mg/L 3. Choo E.F. <i>et al. Drug</i> <i>Metab Dispos</i> 2014 , <i>42</i> , 207.	8.05
Curcumin		0.6 mg/L B.T. Kurien <i>et al. Assay</i> <i>Drug Dev Technol</i> , 2007 , <i>5</i> , 567.	3.07
Elacridar		120 μg/L Sane R. <i>et al. J Pharm Sci</i> 2013 , <i>102</i> , 1343.	4.43
Dexamethasone		0.1 g/L Dilova V. et <i>al. Boll Chim</i> <i>Farm</i> 2004 ,143, 20.	2.03
Clofazimine		0.3 g/L Peters K. <i>et al. J.</i> <i>Antimicrob. Chemother.</i> 2000 , 45, 77.	7.46

Table S2. Chemical structure and solubility parameters of tested APIs

*From Scifinder, calculated using Advanced Chemistry Development (ACD/Labs) Software V11.02