Supporting Information

Intrinsic Superoxide Dismutase Activity of MnO Nanoparticles Enhances Magnetic Resonance Imaging Contrast

Ruben Ragg,^a Anna M. Schilmann,^a Karsten Korschelt,^a Christian Wieseotte,^b Martin Kluenker,^a Melanie Viel,^a Lara Völker,^a Sebastian Preiß,^a Jana Herzberger,^{c,d} Holger Frey,^c Katja Heinze,^a Peter Blümler,^e Muhammad N. Tahir,^a Filipe Natalio,^f and Wolfgang Tremel^{a*}

- ^a Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg University Mainz, Duesbergweg
 10–14, 55128 Mainz, Germany.^{*} email: tremel@uni-mainz.de
- ^c Section of Medical Physics, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany.
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10–14, 55128 Mainz, Germany.
- ^d Graduate School Materials Science in Mainz, Staudinger Weg 9, 55128 Mainz, Germany.
- ^e Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany.
- ^f Institute of Chemistry Inorganic Chemistry, Kurt Mothes-Str. 2, Martin-Luther-Universität Halle-Wittenberg, 06120 Halle, Germany.

Fig. S1. Size distribution for MnO NPs determined by TEM (size of 50 individual NPs), reveiling an average diameter of 7.6±0.7 nm.

Fig. S2. P-XRD of MnO NPs (black) showing the formation of phase-pure face-centered cubic manganosite, *syn*-MnO (red).

Fig. S3. Water soluble surface funcationalized 8 nm MnO NPs with C-PEG. NPs retain size and shape during the functionalization process. Scale bar: 200 nm. Inset: Phase transfer of the MnO NPs in hexane/water before (left) and after (right) the functionalization with C-PEG.

Fig. S4. Synthesis of Mn₃O₄ NPs. P-XRD of Mn₃O₄ NPs (black) showing the formation of phase-pure body-centered tetragonal hausmannite, *syn*-Mn₃O₄ (red). Inset: TEM Image of monodisperse 8 nm Mn₃O₄ NPs. Scale bar: 100 nm.

Fig. S5. Oxygen evolution of MnO NPs when exposed to superoxide radicals generated by xanthine/xanthine oxidase (XO) without addition of cytochrome c (pH 7.4). Molecular oxygen (O_2) is depleted by enzymatic activity of XO (black) forming superoxide radicals. In general superoxide dismutation by SOD-active materials leads to the formation of hydrogen peroxide and oxygen (50% each). MnO NPs reduce the oxygen depletion to approx. 50% (red), which is equivalent to the formation of an equivalent amount of O_2 .

Fig. S6. Formation of H_2O_2 during the SOD-reaction of MnO NPs (red) cannot be demonstrated using the classical HRP/ABTS assay due to the intrinsic catalase-like activity of MnO NPs. As a positive control H_2O_2 has been added to the reaction mixture without addition of MnO (black).

Fig. S7. Catalase-like reaction of MnO NPs monitored by disappearance of peroxide at 240 nm for 3 min at RT. Concentrations of 10mM H_2O_2 and 50 mM PBS pH 7.4 were used, while varying amounts of MnO nanoparticles (0.2, 0.7, 1.1, 2.2 µg/mL).

Fig. S8. Specific relaxivities r_1 and r_2 of Mn^{2+} ion **a** without and **b** with addition of superoxide generated by xanthine/xanthine oxidase (XO). Relaxivities were determined by linear regression and show values for **a** r_1 7.95±0.01 mM⁻¹s⁻¹ and r_2 62.07±8.26 mM⁻¹s⁻¹, **b** r_1 = 6.81±0.34 mM⁻¹s⁻¹ and r_2 = 36.95±6.88 mM⁻¹s⁻¹, respectively.

Fig. S9. X-band EPR spectra of MnO NPs in a frozen 50/50 mixture water/glycerol (77 K, 9.4 GHz) without (black) and with addition of superoxide generated by xanthine/xanthine oxidase (XO, red) after 30 min. Both spectra show the characteristic anisotropic six line pattern of Mn^{2+} (⁵⁵Mn; *I* = 5/2; 100%) with a reduction in signal intensity due to the superoxide treatment (red).