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Fig. S1. Size distribution for MnO NPs determined by TEM (size of 50 individual NPs), 

reveiling an average diameter of 7.6±0.7 nm.
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Fig. S2. P-XRD of MnO NPs (black) showing the formation of phase-pure face-centered cubic 

manganosite, syn-MnO (red).
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Fig. S3. Water soluble surface funcationalized 8 nm MnO NPs with C-PEG. NPs retain size 

and shape during the functionalization process. Scale bar: 200 nm. Inset: Phase transfer of the 

MnO NPs in hexane/water before (left) and after (right) the functionalization with C-PEG.
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Fig. S4. Synthesis of Mn3O4 NPs. P-XRD of Mn3O4 NPs (black) showing the formation of 

phase-pure body-centered tetragonal hausmannite, syn-Mn3O4 (red). Inset: TEM Image of 

monodisperse 8 nm Mn3O4 NPs. Scale bar: 100 nm.
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Fig. S5. Oxygen evolution of MnO NPs when exposed to superoxide radicals generated by 

xanthine/xanthine oxidase (XO) without addition of cytochrome c (pH 7.4). Molecular oxygen 

(O2) is depleted by enzymatic activity of XO (black) forming superoxide radicals. In general 

superoxide dismutation by SOD-active materials leads to the formation of hydrogen peroxide 

and oxygen (50% each). MnO NPs reduce the oxygen depletion to approx. 50% (red), which is 

equivalent to the formation of an equivalent amount of O2.
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Fig. S6. Formation of H2O2 during the SOD-reaction of MnO NPs (red) cannot be 

demonstrated using the classical HRP/ABTS assay due to the intrinsic catalase-like activity of 

MnO NPs. As a positive control H2O2 has been added to the reaction mixture without addition of 

MnO (black).
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Fig. S7. Catalase-like reaction of MnO NPs monitored by disappearance of peroxide at 240 

nm for 3 min at RT. Concentrations of 10mM H2O2 and 50 mM PBS pH 7.4 were used, while 

varying amounts of MnO nanoparticles (0.2, 0.7, 1.1, 2.2 µg/mL).
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Fig. S8. Specific relaxivities r1 and r2 of Mn2+ ion a without and b with addition of superoxide 

generated by xanthine/xanthine oxidase (XO). Relaxivities were determined by linear regression 

and show values for a r1 7.95±0.01 mM-1s-1 and r2 62.07±8.26 mM-1s-1, b r1 = 6.81±0.34 mM-1s-1 

and r2 = 36.95±6.88 mM-1s-1, respectively.
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Fig. S9. X-band EPR spectra of MnO NPs in a frozen 50/50 mixture water/glycerol (77 K, 9.4 

GHz) without (black) and with addition of superoxide generated by xanthine/xanthine oxidase 

(XO, red) after 30 min. Both spectra show the characteristic anisotropic six line pattern of Mn2+ 

(55Mn; I = 5/2; 100%) with a reduction in signal intensity due to the superoxide treatment (red).
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