Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2017

This version of the electronic supplementary information (ESI) replaces the version first published on 6th February 2017. Following further experiments the authors have added new SDS-PAGE and MALDI-TOF data

ApAGP Fabricated Silver Nanoparticles Induce Amendment of Murine Macrophage Polarization

Mamilla R Charan Raja^{a,b}, Vinod Kumar Vadivel^c, Nivedha Radhakrishnan^a, Varsha Srinivasan^a, Sharmila Selvaraj^a, Roshni Mukundan^a, Subhashree Raghunandan^a, Savarimuthu Philip Anthony^{c,*}, Santanu Kar Mahapatra^{a,b*}

^aMedicinal Chemistry and Immunology Laboratory, Department of Biotechnology, School of Chemical and Biotechnology, SASTRA University, Thanjavur–613 401, Tamil Nadu, India. E-mail: <u>santanu@scbt.sastra.edu</u>

^bCentre for Research on Infectious Diseases (CRID), School of Chemical & Biotechnology, SASTRA University, Thanjavur 613401, India. E-mail: <u>santanu@scbt.sastra.edu</u>

^cDepartment of Chemistry, School of Chemical and Biotechnology, SASTRA University, Thanjavur-613401, Tamil Nadu, India. E-mail: <u>philip@biotech.sastra.edu</u>

Electronic supplementary information (ESI)

Fig. S1A. UV-Vis. Spectrum scan of ApAGP dissolved in PBS at different concentrations (1, 0.5 & 0.25 mg/ml).

Fig. S1B. (i) Native PAGE, and (ii) SDS-PAGE gel image of ApAGP.

Figure S1C: MALDI-TOF analysis of ApAGP. The isolated ApAGP was characterized by mass spectrometry on an Applied Biosystems 4800 Plus MALDI-TOF/TOF instrument [matrix: α -cyano-4 hydroxycinnamic acid (CHCA), external calibration]. The sample were not fly properly even after repeated trial, hence the signal-to-noise ratio is poor. According to the

spectrum, the ApAGP is ~68 kDa protein indicated by the major peak. Another two additional peaks in the spectrum are the doubly-charged protein (~34 kDa) and the triply-charged protein (~22 kDa), respectively.

Figure S1C: FT-IR spectrum of ApAGP. In order to characterize different functional groups of the isolated APAGP we took the IR-spectra of the purified APAGP on KBr film. Appearance of the strong bands at 1075.57 cm⁻¹ correspond to the presence of pyranose and (or) furanose ring system, whereas, the band at and 1188.85 cm⁻¹ corresponds to the -C-O-C- stretching vibration, which is the characteristics of carbohydrate molecules. Presence of the amide linkage (of a protein) confirmed by the bands that appear at 1458.05 cm⁻¹ (amide III mode) and 1594.88 cm⁻¹ (amide I mode). Additionally, appearance of a weak band at 2454.94 cm⁻¹ (S-H stretching) clearly shows the presence of amino acid with -SH bond. Finally, the presence of band at 2924.52 cm⁻¹ corresponds the –C-H stretching vibration and the broad band appeared at 3418.21 cm⁻¹ represents the existence of hydroxyl groups (preferably of the carbohydrate part) which are involved in intermolecular hydrogen bonding.

Fig. S2. Zeta potential distribution of SNP-ApAGP.

Figure S3A: Absorption spectrum of control SNPs (stabilized with citrate).

Figure S3B: TEM images of control SNPs (stabilized with citrate).

Figure S4: Effect of SNP alone on mouse peritoneal macrophages. A) % of cell viability of peritoneal macrophages due to SNP alone treatment. B-C) Comparative ROS and NO generation by peritoneal macrophages due to SNP alone and SNP-ApAGP treatment. D-E) NO generation and TNF- α release by M0, M1 and M2 polarized peritoneal macrophages during treatment with SNP alone (1 µg/mL) and SNP-ApAGP (1 µg/mL). The experiment was repeated three times independently and data are shown as mean ± SD. Asterisk indicates significant differences compared with the untreated control group (*p<0.05 and **p<0.01).

Fig: S5. Characterization of isolated peritoneal macrophages. Isolated and cultured peritoneal macrophages (2×10^6) were stained with anti-mouse F4/80-FITC (BioLegend) and analyzed in a Becton-Dickinson FACS verse flow cytometer using CellQuest software. We found that 98.48% cells were F4/80 positive (cell surface marker of macrophage).

Fig: S6: A) Cell cytotoxicity, B) NO generation, C) ROS generation, D) Arginase 1 activity, E) IL-12 release, F) IFN- γ release, G) TNF- α release, H) IL-6 release, I) IL-10 release, and J) IL-4 release by thioglycolate-elicited peritoneal macrophages. Peritoneal macrophages were isolated by 4% thioglycolate intraperitoneal injections followed by harvesting after 5 days as described earlier (Charan Raja MR *et al.*, RSC Advances 2016; Bandyopadhyay S *et al.*, PLOS One 2015). Macrophages were cultured in RPM I1640 with 10% FBS and antibiotics for 48 h prior to all experiments.