Supporting information

A Modular Approach towards Drug delivery Vehicles Using Oxanorbornanebased Non-ionic Amphiphiles

D. Sirisha Janni,^{a†} U. Chandrasekhar Reddy,^{a†} Soumya Saroj, ^a K. M. Muraleedharan ^{a*}

Department of Chemistry, Indian Institute of Technology Madras, Chennai-600 036, India. Fax: +91 44 2257 4202; Tel: +91 44 2257 4233; E-mail: <u>mkm@iitm.ac.in</u>.

S. No	Table of Contents	Page No.
1	Synthetic scheme	2
2	Experimental procedure & Spectral data	3-18
3	SEM images and DLS analysis results	19-21
4	CMC calculation	22
5	Results from PXRD analyses	23
6	Composition of Niosomal formulations	23
7	Niosomal formulations – particle size distribution and morphology	24
8	CTEM images of sample from 1c	25
9	Drug-loading and drug-release studies	25-28
10	Stability of aggregates	29
11	¹ H & ¹³ C NMR spectra of various compounds	30-84

[†] these authors contributed equally

•

1. Synthetic scheme:

Scheme 1-SI. Syntheses of amphiphiles with C_7 and C_{13} chain lengths having amino acid units as spacers between head and tail.

2. Experimental procedure & Spectral data:

General procedure for the preparation of compounds 5a-e, 6a-e (N-acylation):

To a stirred solution of the amino acid methyl ester (1.0 equiv.) and Et_3N (2.2 equiv.) in dry dichloromethane was added the appropriate acid chloride (1.1 equiv.) at 0 °C under N₂ atmosphere. The reaction mixture was warmed to room temperature and allowed to stir for 3-4 h. After completion of the reaction, the mixture was washed with water and extracted with dichloromethane. The organic layer was dried using Na₂SO₄ and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel using 20-30% EtOAc/Hexane. Yields and spectroscopic details of various compounds are given below.

N-octanoyl Gly-methyl ester (5a): Yield, 82%; R_f (5% EtOAc/Hexane), 0.62; ¹H NMR (CDCl₃, 400 MHz): δ 6.02 (bs, $\bigcap_{H} C_{7H_{15}}$ 1H), 4.04 (d, 2H, J = 4.4 Hz), 3.75 (s, 3H), 2.24 (t, 2H, J = 7.6Hz), 1.70-1.59 (quin, 2H, J = 6.8 Hz), 1.35-1.23 (m, 8H), 0.87 (t, 3H, J = 6.8 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ 173.5, 170.7, 52.4, 41.3, 36.5, 31.8, 29.1 (2C), 25.7, 22.6, 14.1; IR (KBr): 2927, 2858, 2364, 1752, 1656, 1547, 1446, 1371, 1208, 1033, 707 cm⁻¹; HRMS (ESI) exact mass calcd. for C₁₁H₂₂NO₃ (M+H)⁺ 216.1600, found (M+H)⁺ 216.1590.

N-octanoyl Ala-methyl ester (5b): Yield, 79%; R_f (5% EtOAc/Hexane), 0.62; ¹H NMR (CDCl₃, 500 MHz): δ 6.08 (bs, 1H), 4.58 (quin, 1H, J = 7.0 Hz), 3.73 (s, 3H), 2.18 (t, 2H, J = 7.5 Hz), 1.61 (quin, 2H, J = 7.0 Hz), 1.38 (d, 3H, J = 5.6 Hz), 1.35-1.20 (m, 8H), 0.85 (t, 3H, J = 6 Hz); ¹³C NMR (CDCl₃, 125 MHz): δ 173.8, 172.8, 52.5, 48.0, 36.6, 31.8, 29.3, 29.1, 25.7, 22.7, 18.6, 14.1; IR (KBr): 2864, 1744, 1651, 1538, 1453, 1374, 1266, 1204, 1154, 1014, 759 cm⁻¹; HRMS (ESI) exact mass calcd. for C₁₂H₂₄NO₃ (M+H)⁺230.1756, found (M+H)⁺230.1746.

N-octanoyl Phe-methyl ester (5c): Yield, 86%; R_f (5% EtOAc/Hexane), 0.70; ¹H NMR (CDCl₃, 400 MHz): δ 7.32-7.20 (m, 3H), 7.09 (d, 2H, J = 6.8 Hz), 5.90 (d, 1H, J = 7.6 Hz), 4.9-4.8 (m, 1H) 3.73 (s, 3H), 3.15 (dd, 1H, J = 14.0, 6.0 Hz), 3.09 (dd, 1H, J = 13.6, 5.6

Hz), 2.17 (t, 2H, J = 6.8 Hz), 1.58 (quin, 2H, J = 7.2 Hz), 1.32-1.23 (m, 8H), 0.88 (t, 3H, J = 6.8

Hz); ¹³C NMR (CDCl₃, 100 MHz): δ 172.8, 172.3, 136.0, 129.4 (2C), 128.7 (2C), 127.2, 53.0, 52.4, 36.7, 31.8, 29.3, 29.1 (2C), 25.7, 22.7, 14.2; IR (KBr): 2927, 2857, 1751, 1746, 1650, 1540, 1446, 1211, 1179, 743, 701, 697, 670 cm⁻¹; HRMS (ESI) exact mass calcd. for C₁₈H₂₈NO₃ (M+H)⁺ 306.2069, found (M+H)⁺ 306.2079

N-octanoyl Val-methyl ester (5d): Yield, 77%; R_f (5% EtOAc/Hexane), 0.66; ¹H NMR (CDCl₃, 500 MHz): δ 5.96 (bs, 1H), 4.59-4.54 (m, 1H), 3.72 (s, 3H), 2.22 (t, 2H, J = 7.5 Hz), 2.13 (quin, 1H,

J = 6.5 Hz), 1.62 (t, 2H, J = 6.5 Hz), 1.32-1.23 (m, 8H), 0.92 (d, 3H, J = 6.5 Hz), 0.88 (d, 3H, J = 6.5 Hz), 0.86 (t, 3H, J = 7.0 Hz); ¹³C NMR (CDCl₃, 125 MHz): δ 173.2, 172.9, 56.9, 52.2, 36.8, 31.8, 31.4, 29.3, 29.1, 25.8, 22.7, 19.0, 17.9, 14.2; IR (KBr): 3590, 3376, 3272, 3063, 2956, 2859, 1745, 1650, 1539, 1460, 1373, 1206, 1153, 1018 cm⁻¹; HRMS (ESI) exact mass calcd. for C₁₄H₂₈NO₃ (M+H)⁺ 258.2069, found (M+H)⁺ 258.2063.

N-octanoyl Leu-methyl ester (5e)

Yield, 89%;
$$R_f$$
 (5% EtOAc/Hexane), 0.66; ¹H NMR (CDCl₃, 500
MHz): δ 5.87 (bs, 1H), 4.63 (sext, 1H, $J = 4.5$ Hz), 3.71 (s, 3H), 2.19 (t,
2H, $J = 7.0$ Hz), 1.68-1.58 (m, 4H), 1.51 (quin, 1H, $J = 9.0$ Hz), 1.34-
1.20 (m, 8H), 0.96-0.90 (m, 6H), 0.86 (t, 3H, $J = 6.5$ Hz); ¹³C NMR

(CDCl₃, 125 MHz): δ 173.9, 173.1, 52.4, 50.6, 41.9, 36.7, 31.8, 29.3, 29.1, 25.7, 25.0, 22.9, 22.7, 22.1, 14.2; IR (KBr): 2954, 2861, 2345, 2338, 1747, 1650, 1543, 1457, 1371, 1273, 1207, 1160, 1024, 721, 667 cm⁻¹; HRMS (ESI) exact mass calcd. for C₁₅H₃₀NO₃ (M+H)⁺ 272.2147, found (M+H)⁺ 272.2154

N-myristoyl Ala-methyl ester (6a): Yield, 94%; R_f (5% EtOAc/Hexane), 0.70; ¹H NMR (CDCl₃, 500 MHz): δ 6.02 (bs, 1H), 4.60 (quin, 1H, J = 7.0 Hz), 3.74 (s, 3H), 2.19 (t, 2H, J = 7.5 Hz), 1.62

(quin, 2H, J = 7.5 Hz), 1.39 (d, 3H, J = 7.0 Hz), 1.32-1.22 (m, 20H), 0.87 (t, 3H, J = 6.5 Hz); ¹³C NMR (CDCl₃, 125 MHz): δ 173.9, 172.8, 52.6, 48.0, 36.7, 32.0, 29.8, 29.77 (3C), 29.74, 29.6, 29.5, 29.4, 25.7, 22.8, 18.7, 14.2; IR (KBr): 3053, 2988, 2932, 2923, 2854, 2309, 2301, 1747, 1742, 1736, 1671, 1509, 1439, 1266, 1215, 1166, 897 cm⁻¹; HRMS (ESI) exact mass calcd. for C₁₈H₃₆NO₃ (M+H)⁺ 314.2695, found (M+H)⁺ 314.2686.

N-myristoyl Phe-methyl ester (6b): Yield, 67%; R_f (5% EtOAc/Hexane), 0.80; ¹H NMR (CDCl₃, 400 MHz): δ 7.32-7.22 (m, 3H), 7.08 (d, 2H, J = 6.8 Hz), 5.86 (bs 1H), 4.90 (q, 1H, J = 5.6 Hz), 3.73 (s, 3H), 3.15 (dd, 1H, J = 14.0 Hz, 6.0 Hz), 3.09 (dd, 1H, J = 14.0

Hz, 6.0 Hz), 2.16 (t, 2H, J = 7.2 Hz), 1.58 (t, 2H, J = 6.8 Hz), 1.32-1.23 (m, 20 H), 0.88 (t, 3H, J = 6.4 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ 172.8, 172.3, 136.0, 129.4 (2C), 128.7 (2C), 127.2, 53.0, 52.4, 38.1, 36.7, 32.0, 29.8, 29.78 (3C), 29.75, 29.6, 29.5, 29.3, 25.7, 22.8, 14.2; IR (KBr): 3332, 3055, 2922, 2854, 2325, 1744, 1673, 1645, 1531, 1462, 1454, 1448, 1428, 1267, 745, 675, 659 cm⁻¹; HRMS (ESI) exact mass calcd. for C₂₄H₄₀NO₃ (M+H)⁺ 390.2930, found (M+H)⁺ 390.2939

N-myristoyl Val-methyl ester (6c): Yield, 87%; R_f (5% EtOAc/Hexane), 0.75; ¹H NMR (CDCl₃, 400 MHz): δ 5.90 (d, 1H, $J = \int_{O} \int_{O}$

N-myristoyl Leu-methyl ester (6d): Yield, 91%; R_f (5% EtOAc/Hexane), 0.75; ¹H NMR (CDCl₃, 500 MHz): δ 5.90 (bs, 1H), 4.64 (td, 1H, J = 9.0 Hz, 4.0 Hz), 3.71 (s, 3H), 2.19 (t, 2H, J = 8.0 Hz), 1.68-1.58 (m, 4H), 1.51 (q, 1H, J = 9.0 Hz), 1.30-1.20 (m, 20H), 0.92

(t, 6H, J = 3.5 Hz), 0.86 (t, 3H, J = 6.0 Hz); ¹³C NMR (CDCl₃, 125 MHz): δ 173.9, 173.1, 52.3, 50.6, 41.9, 36.7, 32.0, 29.8, 29.76 (3C), 29.72, 29.6, 29.5, 29.3, 25.7, 25.0, 22.9, 22.8, 22.1, 14.2; IR (KBr): 3348, 2918, 2852, 2359, 1751, 1644, 1529, 1462, 1375, 1271, 1239, 1201, 1156, 977, 729 cm⁻¹; HRMS (ESI) exact mass calcd. for C₂₁H₄₂NO₃ (M+H)⁺ 356.3165, found (M+H)⁺ 356.3168.

N-myristoyl Ileu-methyl ester (6e): Yield, 83%; R_f (5% $C_{13}H_{27}$ EtOAc/Hexane), 0.80; ¹H NMR (CDCl₃, 400 MHz): δ 5.81 (bs, 1H), 4.65 -O HN

5

(td, 1H, J = 8.8 Hz, 5.2 Hz), 3.72 (s, 3H), 2.20(t, 2H, J = 7.6 Hz), 1.68-1.57 (m, 4H), 1.51 (quin, 1H, J = 9.2 Hz), 1.33-1.22 (m, 20H), 0.94 (d, 3H, J = 2.4 Hz), 0.93 (d, 3H, J = 2.8 Hz), 0.87 (t, 3H, J = 6.4 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ 173.9, 173.1, 52.4, 50.7, 41.9, 36.7, 32.1, 29.8, 29.77, 29.74, 29.6, 29.5, 29.4, 25.7, 25.0, 22.9, 22.8, 22.1, 14.2 (3C); IR (KBr): 3436, 3056, 2928, 2857, 2360, 2313, 1739, 1671, 1511, 1430, 1265, 896, 743 cm⁻¹; HRMS (ESI) exact mass calcd. for C₂₁H₄₂NO₃ (M+H)⁺ 356.3165, found (M+H)⁺ 356.3178.

Procedure for the preparation of esters 10a-e, 11a-e:

Step 1. Preparation of free acids **7a-e**, **8a-e**: Lithium hydroxide (2 equiv.) was added to a solution of the methyl esters **5a-e/6a-e** (1equiv.) in THF-H₂O (3:1) and the mixture was stirred overnight. The solvent was evaporated, diluted with water and washed with ethyl acetate to remove organic impurities. The aquoeous layer was then treated with 10% HCl to bring the pH to ~2, extracted with EtOAc twice, the organic layer washed with water and dried over Na₂SO₄. Evaporation of the solvent under reduced pressure gave C₇ and C₁₃ N-acylated amino acids in quantitative yield. These acids were then used for esterification with **9**.

Step 2. Preparation of esters **10a-e/11a-e**, **12a-f**: To a stirred solution containing a mixture of N-acyl amino acid **7a-e/8a-e** (1 equiv.) and 1-hydroxybenzotriazole (HOBT, 1 equiv.) in dry DCM at 0 °C was added i-Pr₂NEt (1.2 equiv.) and 1-ethyl-3-[3-(dimethylamino)propyl]-carbodiimide hydrochloride (EDCI, 1.1 equiv.). The reaction mixture was stirred at 0 °C for 10 min to which the alcohol 9 was added, allowed to stir at 0 °C for 30 min and then at room temperature for 24 h. After completion of the reaction, mixture was diluted with DCM and washed with water (30 mL). The organic layer was dried over anhydrous Na₂SO₄, filtered, solvent evaporated under reduced pressure, and the residue was purified by chromatography on silica gel column using EtOAc/Hexane to get compounds **10a-e**, **11a-e** in 65-87% yields. Use of NBoc amino acids in esterification gave the corresponding esters **12a-f** (**12a** R = H; **12b** R=CH₃; **12c** R=CH₂Ph; **12d** R=CH(CH₃)₂; **12e** R = CH₂CH(CH₃)₂; **12f** R=CH(CH₃)CH₂CH₃ with R₁ = -OtBu 69-83% yields.

Compound 10a: Yield, 65%; R_f (50% EtOAc/Hexane), 0.38; ¹H NMR (CDCl₃, 400 MHz): δ 6.52 (s, 2H), 5.96 (bs, 1H), 5.26 (s, 2H), 4.32 (t, 2H, J = 4.8 Hz), 3.99 (d, 2H, J = 5.2 Hz), 3.77 (t, 2H, J = 5.2 Hz), 2.88 (s, 2H), 2.22 (t,

2H, J = 7.6 Hz), 1.68-1.59 (m, 2H), 1.35-1.23 (m, 8H), 0.87 (t, 3H, J = 6.4 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ 176.2 (2C), 173.4, 169.9, 136.7 (2C), 81.1 (2C), 61.5, 47.6 (2C), 41.4, 37.8, 36.5, 31.8, 29.4, 29.1, 25.7, 22.8, 14.2; IR (KBr): 3434, 3322, 3056, 2957, 2930, 2857, 1752, 1707, 1676, 1518, 1429, 1400, 1375, 1338, 1266, 1193, 1154, 1127, 1022, 992, 917, 896, 878, 854, 739 cm⁻¹; HRMS (ESI) exact mass calcd. for C₂₀H₂₈N₂O₆Na (M+Na)⁺415.1845, found (M+Na)⁺415.1834.

Compound 10b: Yield, 74%; R_f (50% EtOAc/Hexane), 0.40; ¹H NMR (CDCl₃, 500 MHz): δ 6.51 (s, 2H), 6.02 (d, 1H, J = 9.0 Hz), 5.26 (s, 2H), 4.56 (quin, 1H, J = 9.5) 4.36-4.26 (m, 2H), 3.77 (t, 2H, J = 6.5 Hz), 2.88 (q, 2H, J = 8.0 Hz), 2.19 (t, 2H, J = 8.5 Hz), 1.61 (quin, 2H, J = 7.2 Hz), 1.35 (d, 3H, J = 9.0 Hz), 1.28 (t, 8H, J = 6.0 Hz), 0.87 (t, 3H, J = 8.0Hz); ¹³C NMR (CDCl₃, 125 MHz): δ 176.2, 176.1, 172.7, 172.6, 136.6 (2C), 81.0 (2C), 61.5, 48.0, 47.6, 47.55, 37.8, 36.6, 31.8, 29.3, 29.1, 25.6, 22.7, 18.4, 14.1; IR (KBr): 3056, 2985, 2958, 2930, 2858, 1777, 1747, 1701, 1671, 1512, 1456, 1427, 1400, 1337, 1310, 1267, 1194, 1155, 1124, 1063, 1023, 917, 895, 879, 855, 751, 704 cm⁻¹; HRMS (ESI) exact mass calcd. for C₂₁H₃₁N₂O₆ (M+H)⁺ 407.2182, found (M+H)⁺ 407.2187.

Compound 10c: Yield, 81%; R_f (50% EtOAc/Hexane), 0.5; ¹H NMR (CDCl₃, 500 MHz): δ 7.30-7.18 (m, 3H), 7.13-7.07 (m, 2H), 6.50 (s, 2H), 5.88 (d, 1H, J = 8.0 Hz), 5.24 (d, 2H, J = 5.0 Hz), 4.86 (td, 1H, J = 8.0, 6.0 Hz), 4.33-4.20 (m, 2H), 3.75 (t, 2H, J = 5.5 Hz), 3.14 (dd, 1H,

J = 16.0, 5.5 Hz), 3.02 (dd, 1H, J = 14, 6.5 Hz), 2.84 (d, 2H, J = 1.5 Hz), 2.20-2.10 (m, 2H), 1.56 (quin, 2H, J = 8.0 Hz), 1.32-1.20 (m, 8H), 0.86 (t, 3H, J = 7.0 Hz); ¹³C NMR (CDCl₃, 125 MHz): δ 176.1 (2C), 172.9, 171.2, 136.6 (2C), 136.2, 129.4 (2C), 128.6 (2C), 127.1, 81.0 (2C), 61.6, 53.1, 47.6, 47.58, 37.73, 37.69, 36.6, 31.8, 29.3, 29.1, 25.6, 22.7, 14.2; IR (KBr): 3427, 3055, 2985, 2929, 2857, 1746, 1704, 1672, 1510, 1454, 1425, 1399, 1337, 1264, 1193, 1155, 1126, 1023, 917, 896, 879, 701 cm⁻¹; HRMS (ESI) exact mass calcd. for C₂₇H₃₅N₂O₆ (M+H)⁺ 483.2495, found (M+H)⁺ 483.2485.

Compound 10d: Yield, 79%; R_f (50% EtOAc/Hexane), 0.44; ¹H NMR (CDCl₃, 400 MHz): δ 6.49 (s, 2H), 6.00 (d, 1H, J = 8.8 Hz), 5.22 (s, 2H), 4.51 (dd, 1H, J = 8.4 Hz, 4.8 Hz), 4.31-4.19 (m, 2H), 3.74 (t, 2H, J = 5.2 Hz), 2.84

(s, 2H), 2.20 (t, 2H, J = 7.6 Hz), 2.09 (sext, 1H, J = 6.4 Hz), 1.59 (quin, 2H, J = 6.0 Hz), 1.33-1.18 (m, 8H), 0.88 (d, 3H, J = 6.4 Hz), 0.86-0.80 (m, 6H); ¹³C NMR (CDCl₃, 100 MHz): δ 176.1, 176.0, 173.2, 171.6, 136.6, 136.5, 80.9 (2C), 61.3, 56.8, 47.5, 47.4, 37.7, 36.7, 31.7, 31.1, 29.3, 29.0, 25.7, 22.6, 19.0, 17.7, 14.5; IR (KBr): 3055, 2961, 2929, 2857, 2307, 1778, 1746, 1705, 1651, 1524, 1466, 1398, 1337, 1272, 1192, 1151, 1022, 999, 917, 879, 855, 749 cm⁻¹; HRMS (ESI) exact mass calcd. for C₂₃H₃₅N₂O₆ (M+H)⁺435.2495, found (M+H)⁺435.2495.

Compound 10e: Yield, 82%; R_f (50% EtOAc/Hexane),

0.46; ¹H NMR (CDCl₃, 400 MHz): δ 6.51 (s, 2H), 5.82 (d, 1H, *J* = 8.4 Hz), 5.26 (d, 2H, *J* = 2.8 Hz), 4.61 (td, 1H, *J* = 8.8, 4.4 Hz), 4.30-4.26 (m, 2H), 3.76 (t, 2H, *J* = 6.0 Hz), 2.87 (q, 2H, *J* = 6.4 Hz), 2.19 (t, 2H, *J* = 7.6 Hz), 1.66-

1.56 (m, 4H), 1.46 (quin, 1H, J = 9.2 Hz), 1.33-1.22 (m, 8H), 0.92 (d, 6H, J = 6.0 Hz), 0.87 (t, 3H, J = 6.4 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ 176.2, 176.1, 173.1, 172.7, 136.7 (2C), 81.0 (2C), 61.4, 50.6, 47.6, 47.5, 41.6, 37.9, 36.7, 31.8, 29.3, 29.1, 25.7, 24.9, 23.0, 22.7, 21.9, 14.2; IR (KBr): 2957, 2929, 2858, 1748, 1704, 1650, 1541, 1399, 1336, 1275, 1193, 1154, 1022, 917, 879, 854, 750, 719 cm⁻¹; HRMS (ESI) exact mass calcd. for C₂₄H₃₇N₂O₆ (M+H)⁺ 449.5695, found (M+H)⁺ 449.5688.

Compound 11a: Yield, 79%; R_f (50% EtOAc/Hexane), 0.50; ¹H NMR (CDCl₃, 500 MHz): δ 6.52 (s, 2H), 6.02 (d, 1H, J = 7.0 Hz), 5.26 (d, 2H, J = 7.0 Hz), 4.56 (quin, 1H, J = 4.0 Hz), 4.31 (sext, 2H, J = 5.0), 3.78 (t, 2H, J =

5.0 Hz), 2.88 (q, 2H, *J* = 6.5 Hz), 2.19 (tq, 2H, *J* = 7.5 Hz, 1.6 Hz), 1.62 (sext, 2H, *J* = 6.0 Hz), 1.35 (d, 3H, *J* = 7.0 Hz), 1.30-1.23 (m, 20H), 0.88 (t, 3H, *J* = 6.5 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ 176.1 (2C), 172.8, 172.7, 136.7 (2C), 81.1 (2C), 61.6, 48.1, 47.6, 47.5, 37.9, 36.7, 32.0, 29.8 (3C), 29.6, 29.5 (3C), 29.4, 25.7, 22.8, 18.4, 14.2; IR (KBr): 3431, 3055, 2986, 2926, 2855, 1777, 1746, 1705, 1672, 1510, 1455, 1426, 1400, 1337, 1264, 1194, 1156, 1022, 917, 896, 879, 855, 749 cm⁻¹; HRMS (ESI) exact mass calcd. for $C_{27}H_{43}N_2O_6$ (M+H)⁺ 491.6504, found (M+H)⁺ 491.6491.

Compound 11b: Yield, 72%; R_f (50% EtOAc/Hexane), 0.60; ¹H NMR (CDCl₃, 400 MHz): δ 7.29-7.20 (m, 3H), 7.09 (d, 2H, J = 7.6 Hz), 6.51 (s, 2H), 5.90 (d, 1H, J = 8.0 Hz), 5.24 (d, 2H, J = 4.0 Hz), 4.86 (q, 1H, J = 6.8 Hz), 4.32-4.20 (m, 2H),

3.75 (t, 2H, J = 5.2 Hz), 3.14 (dd, 1H, J = 14.0 Hz, 5.6 Hz), 3.02 (dd, 1H, J = 14.0 Hz, 6.4 Hz), 2.84 (s, 2H), 2.15 (td, 2H, J = 7.2 Hz, 3.6 Hz), 1.56 (quin, 2H, J = 6.4 Hz), 1.34-1.22 (m, 20H), 0.88 (t, 3H, J = 6.0 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ 176.1 (2C), 172.9, 171.2,

136.7, 136.6, 136.2, 129.5 (2C), 128.6 (2C), 127.1, 81.1 (2C), 61.7, 53.1, 47.6, 37.8, 37.7, 36.6, 32.1, 29.8 (4C), 29.6, 29.5 (3C), 29.4, 25.7, 22.8, 14.2; IR (KBr): 3431, 3055, 2986, 2928, 2855, 1777, 1745, 1707, 1673, 1510, 1455, 1424, 1399, 1337, 1265, 1193, 1154, 1126, 1023, 896, 879, 748, 705 cm⁻¹; HRMS (ESI) exact mass calcd. for $C_{33}H_{47}N_2O_6$ (M+H)⁺ 567.3434, found (M+H)⁺ 567.3448.

Compound 11c: Yield, 78%; R_f (50% EtOAc/Hexane), 0.50; ¹H NMR (CDCl₃, 400 MHz): δ 6.51 (s, 2H), 5.95 (d, 1H, J = 8.8 Hz), 5.26 (d, 2H, J = 2.4 Hz), 4.55 (dd, 1H, J =9.2 Hz, 5.2 Hz), 4.34-4.22 (m, 2H), 3.77 (t, 2H, J = 5.2 Hz), 2.87 (s, 2H), 2.22 (t, 2H, J = 7.2 Hz), 2.17-2.10 (m, 1H), 1.70-1.60 (m, 2H), 1.32-1.23 (m, 20H), 0.91 (d, 3H, J = 6.8Hz), 0.87 (t, 3H, J = 6.4 Hz), 0.86 (d, 3H, J = 6.8 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ 176.1, 176.0, 173.2, 171.7, 136.7, 136.6, 81.0 (2C), 61.4, 56.9, 47.6, 47.5, 37.8, 36.8, 32.1, 31.3, 29.8, 29.7 (3C), 29.6, 29.5 (2C), 29.4, 25.8, 22.8, 19.2, 17.8, 14.3; IR (KBr): 3565, 3325, 2958, 2925, 2854, 1744, 1705, 1650, 1537, 1466, 1429, 1398, 1336, 1271, 1192, 1152, 1124, 1022, 917, 878, 854, 748, 720 cm⁻¹; HRMS (ESI) exact mass calcd. for C₂₉H₄₆N₂O₆Na (M+Na)⁺ 541.3254, found (M+H)⁺ 541.3231.

Compound 11d: Yield, 78%; R_f (50% EtOAc/Hexane), 0.50; ¹H NMR (CDCl₃, 400 MHz): δ 6.52 (s, 2H), 5.80 (d, 1H, J = 8.8 Hz), 5.26 (d, 2H, J = 2.4 Hz), 4.62 (td, 1H, J = 9.2 Hz, 4.8 Hz),

4.28 (td, 2H, J = 5.2 Hz, 0.8 Hz), 3.77 (t, 2H, J = 5.6 Hz), 2.88 (q, 2H, J = 6.8 Hz), 2.19 (td, 2H, J = 7.6 Hz, 2.0 Hz), 1.65-1.58 (m, 4H), 1.47 (q, 1H, J = 9.2 Hz), 1.32-1.23 (m, 20H), 0.93 (d, 6H, J = 6.0 Hz), 0.88 (t, 3H, J = 6.8 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ 176.2, 176.1, 173.1, 172.7, 136.7 (2C), 81.0 (2C), 61.4, 50.6, 47.6, 47.5, 41.6, 37.9, 36.7, 32.0, 29.8, 29.7 (3C), 29.6, 29.5 (2C), 29.4, 25.7, 25.0, 23.0, 22.8, 21.9, 14.3; IR (KBr): 3312, 3056, 2956, 2925, 2854, 1776, 1746, 1704, 1651, 1541, 1469, 1399, 1366, 1337, 1275, 1193, 1154, 1125, 1023, 992, 917, 879, 855, 750, 719 cm⁻¹; HRMS (ESI) exact mass calcd. for C₃₀H₄₈N₂O₆Na (M+Na)⁺ 555.3410, found (M+Na)⁺ 555.3417.

Compound 11e: Yield, 87%; R_f (50% EtOAc/Hexane),

0.60; ¹H NMR (CDCl₃, 400 MHz): δ 6.50 (s, 2H), 6.03 (d, 1H, J = 8.4 Hz), 5.25 (s, 2H), 4.67 (dd, 1H, J = 8.8Hz, 4.0 Hz), 4.21 (t, 2H, J = 5.2 Hz), 3.74 (t, 2H, J = 5.6Hz), 2.85 (s, 2H), 2.24 (t, 2H, J = 7.2 Hz), 1.63 (quin,

2H, J = 6.8 Hz), 1.56 (quin, 2H, J = 7.2 Hz), 1.42 (quin, 1H, J = 7.2 Hz), 1.32-1.20 (m, 20H), 0.94 (quin, 3H, J = 4.4 Hz), 0.91 (d, 3H, J = 7.2 Hz), 0.87 (t, 3H, J = 6.8 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ 176.2 (2C), 175.5, 173.7, 136.7 (2C), 81.1 (2C), 60.5, 56.5, 55.3, 47.6 (2C), 38.1, 34.2, 32.0, 29.8, 29.77 (3C), 29.73, 29.6, 29.59, 29.50, 29.38, 29.35, 29.26, 24.8, 22.7, 14.3; IR (KBr): 3365, 2920, 2851, 2361, 2341, 1746, 1718, 1649, 1555, 1541, 1510, 1468, 1397, 1338, 1196, 1153, 1024, 877, 749, 716 cm⁻¹; HRMS (ESI) exact mass calcd. for C₃₀H₄₈N₂O₆Na (M+Na)⁺ 555.7132, found (M+H)⁺ 555.7137.

Compound 12a: Yield, 78%; R_f (60% EtOAc/Hexane),

0.30; ¹H NMR (CDCl₃, 400 MHz): δ 6.51 (s, 2H), 5.26 (s, 2H), 5.02 (bs, 1H), 4.30 (t, 2H, *J* = 5.2 Hz), 3.85 (d, 2H, *J* = 5.6 Hz), 3.75 (t, 2H, *J* = 5.6 Hz), 2.87 (s, 2H), 1.43 (s,

9H); ¹³C NMR (CDCl₃, 100 MHz): δ 176.2 (2C), 170.3, 155.8, 136.6 (2C), 81.1 (2C), 80.1, 61.3, 47.6 (2C), 42.4, 37.8, 28.4 (3C); IR (KBr): 3397, 3008, 2980, 2937, 1751, 1699, 1520, 1398, 1368, 1338, 1278, 1191, 1160, 1126, 1058, 1021, 991, 949, 916, 877, 854 cm⁻¹; HRMS (ESI) exact mass calcd. for C₁₇H₂₂N₂O₇Na (M+Na)⁺ 389.1325, found (M+Na)⁺ 389.1331.

Compound 12b: Yield, 75%; R_f (60% EtOAc/Hexane), 0.30; ¹H NMR (CDCl₃, 400 MHz): δ 6.50 (s, 2H), 5.26 (s, 2H), 5.04 (bs, 1H), 4.29 (t, 2H, J = 5.6 Hz), 3.81 (sext, 2H, J = 5.2 Hz), 2.86 (d, 2H, J = 4.0 Hz), 1.42 (s, 9H),

1.33 (d, 3H, J = 7.2 Hz); NH proton did not appear ¹³C NMR (CDCl₃, 100 MHz): δ 176.1 (2C), 172.9, 155.2, 136.6 (2C), 81.0 (2C), 79.9, 61.4, 49.3, 47.6, 47.5, 37.9, 28.4 (3C), 18.5; IR (KBr): 3438, 3055, 2986, 1777, 1746, 1708, 1651, 1506, 1423, 1399, 1367, 1338, 1265, 1163, 1068, 1023, 916, 896, 880, 855, 745 cm⁻¹; HRMS (ESI) exact mass calcd. for C₁₈H₂₄N₂O₇Na (M+Na)⁺ 403.1481, found (M+Na)⁺ 403.1479.

Compound 12c: Yield, 72%; R_f (60% EtOAc/Hexane),

0.48; ¹H NMR (CDCl₃, 400 MHz): δ 7.30-7.26 (m, 2H), 7.24-7.17 (m, 1H), 7.13 (d, 2H, *J* = 7.2 Hz), 6.50 (s, 2H), 5.26 (d, 2H, *J* = 12.4 Hz), 4.97 (d, 1H, *J* = 8.0 Hz), 4.94 (d, 1H, *J* = 6.0 Hz), 4.37-4.27 (m, 1H), 4.26-4.18 (m, 1H),

3.83-3.69 (m, 2H), 3.11 (dd, 1H, J = 13.6 Hz, 4.8 Hz), 2.96 (dd, 1H, J = 13.2 Hz, 6.8 Hz), 2.85 (s, 2H), 1.39 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz): δ 176.1 (2C), 171.6, 155.6, 136.7, 136.6, 136.4, 129.5 (2C), 128.6 (2C), 127.0, 81.1 (2C), 80.0, 61.4, 54.5, 47.6 (2C), 38.2, 37.7, 28.4 (3C); IR (KBr): 3433, 3056, 2983, 2934, 2307, 1777, 1747, 1704, 1505, 1454, 1428, 1397, 1367, 1338, 1264, 1167, 1126, 1080, 1057, 1023, 998, 917, 896, 879, 856, 802 cm⁻¹; HRMS (ESI) exact mass calcd. for C₂₄H₂₈N₂O₇Na (M+Na)⁺479.1794, found (M+Na)⁺479.1799.

Compound 12d: Yield, 69%; R_f (60% EtOAc/Hexane), 0.40; ¹H NMR (CDCl₃, 400 MHz): δ 6.49 (s, 2H), 5.28 (d, 2H, J = 4.0 Hz), 5.04 (d, 1H, J = 8.8 Hz), 4.36-4.27 (m, 1H), 4.26-4.14 (m,

2H), 3.81-3.69 (m, 2H), 2.86 (s, 2H), 2.14-1.93 (m, 1H), 1.42 (s, 9H), 0.92 (d, 3H, *J* = 6.8 Hz), 0.84 (d, 3H, *J* = 6.8 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ 176.0 (2C), 171.9, 155.8, 136.6 (2C), 81.06, 81.03, 79.8, 61.1, 58.6, 47.6

(2C), 37.8, 31.1, 28.4 (3C), 19.2, 17.5; IR (KBr): 3446, 3056, 2985, 1753, 1708, 1509, 1428, 1398, 1370, 1266, 1194, 1165, 1023, 896, 878, 741, 706 cm⁻¹; HRMS (ESI) exact mass calcd. for $C_{20}H_{28}N_2O_7Na$ (M+Na)⁺431.4426, found (M+Na)⁺431.4431.

Compound 12e: Yield, 72%; R_f (60% EtOAc/Hexane),

0.44; ¹H NMR (CDCl₃, 400 MHz): δ 6.51 (s, 2H), 5.27 (d, 2H, *J* = 3.2 Hz), 4.89 (d, 1H, *J* = 8.8 Hz), 4.35-4.20 (m, 3H), 3.76 (quin, 2H, *J* = 6.4 Hz), 2.87 (d, 2H, *J* = 3.6 Hz), 1.78-1.50 (m, 3H), 1.42 (s, 9H), 0.92 (d, 6H, *J*

= 6.4 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ 176.1 (2C), 173.1, 155.5, 136.7 (2C), 81.0 (2C), 79.9, 61.2, 52.1, 47.6, 47.59, 41.6, 37.9, 28.4 (3C), 24.9, 23.1, 21.8; IR (KBr): 3437, 3056, 2964, 2872, 1776, 1745, 1708, 1651, 1507, 1397, 1368, 1336, 1266, 1162, 1123, 1050, 1023, 879, 748, 705 cm⁻¹; HRMS (ESI) exact mass calcd. for C₂₁H₃₀N₂O₇Na (M+Na)⁺ 445.1951, found (M+Na)⁺ 445.1938.

Compound 12f: Yield, 71%; R_f (60% EtOAc/Hexane),

0.44; ¹H NMR (CDCl₃, 400 MHz): δ 6.47 (s, 2H), 5.23 (d, 2H, *J* = 10.0 Hz), 5.07 (d, 1H, *J* = 9.2 Hz), 4.34-4.25 (m, 1H), 4.23-4.13 (m, 2H), 3.78-3.67 (m, 2H), 2.84 (d, 2H, *J* = 2.0 Hz), 1.39 (s, 9H), 1.35-1.33 (m, 2H), 1.14-

1.10 (m, 1H), 0.85 (t, 6H, J = 6.0 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ 176.0 (2C), 171.9, 155.6, 136.6, 136.5, 80.97, 80.94, 79.7, 60.9, 57.9, 47.5 (2C), 37.8, 37.7, 28.4 (3C), 24.9, 15.5, 11.7; IR (KBr): 3585, 3564, 3443, 3055, 2983, 2361, 1709, 1505, 1456, 1423, 1397, 1367, 1337, 1266, 1192, 1159, 1023, 742 cm⁻¹; HRMS (ESI) exact mass calcd. for C₂₁H₃₀N₂O₇Na (M+Na)⁺ 445.4696, found (M+Na)⁺ 445.4693.

General procedure for the preparation of 1a-e, 2a-e, 3a-f:

To a stirred solution containing a mixture of the oxanorbornene derivative (**10a-e/11a-e/12a-f**; 1.0 equiv.), N-methyl morpholine N-Oxide (2.4 equiv.) and pyridine (30 μ L for 100 mg of the alkene) in *t*-BuOH-H₂O (3:1) was added osmium tetroxide (0.02 M solution in *t*-BuOH, 0.01 equiv.) and it was heated at 80 °C for 7-8 h. After completion of the reaction, the mixture was cooled to room temperature, treated with 15% aq. Na₂SO₃ solution (1 mL), allowed to stir for 5-10 min. *t*-BuOH was then removed under reduced pressure and the mixture was diluted with dichloromethane, dried using sodium sulfate, evaporated under reduced pressure, and the residue was purified by column chromatography on silica gel using EtOAc/DCM/MeOH

(50:45:5) in a gradient mode to get the products as colorless solids. Yields and spectroscopic details of various compounds synthesized are given below.

Compound 1a: Yield, 92%; R_f (EtOAc), 0.40; ¹H NMR (CDCl₃, 500 MHz): δ 4.61 (s, 2H), 4.43 (bs, 1H), 4.30 (t, 2H, J = 5.5 Hz), 3.94 (s, 2H), 3.92 (s,

2H), 3.75 (t, 2H, J = 5.0 Hz), 3.40 (bs, 1H), 2.83 (s, 2H), 2.21 (t, 2H, J = 7.5 Hz), 1.60 (quin, 2H, J = 7.5 Hz), 1.29-1.23 (m, 8H), 0.86 (t, 3H, J = 7 Hz), -NH proton did not appear; ¹³C NMR (CDCl₃+CD₃OD, 100 MHz): δ 176.5 (2C), 174.8, 169.8, 83.8 (2C), 72.2 (2C), 60.8, 45.3 (2C), 40.7, 37.7, 35.8, 31.4, 28.9, 28.7, 25.4, 22.3, 13.6; IR (KBr): 3322, 2921, 2850, 1751, 1705, 1642, 1522, 1438, 1405, 1326, 1190, 1119, 998, 879, 849, 828, 813, 769, 733, 653 cm⁻¹; HRMS (ESI) exact mass calcd. for C₂₀H₃₁N₂O₈ (M+H)⁺ 427.2080, found (M+H)⁺ 427.2066.

Compound 1b: Yield, 96%; R_f (EtOAc), 0.40; ¹H NMR (CDCl₃, 400 MHz): δ 6.15 (d, 1H, J = 7.6 Hz), 4.65 (s, 1H), 4.62 (s, 1H), 4.52 (quin, 1H, J = 7.2 Hz), 4.38-4.33 (m, 1H), 4.26-4.20 (m, 1H), 4.04 (bs, 1H),

4.00-3.92 (m, 3H), 3.83-3.70 (m, 2H), 2.86 (d, 2H, J = 2.4 Hz), 2.22-2.18 (m, 2H), 1.60 (quin, 2H, J = 6.8 Hz), 1.34 (d, 3H, J = 7.2 Hz), 1.30-1.22 (m, 8H), 0.87 (t, 3H, J = 6.0 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ 176.2 (2C), 173.5, 172.7, 84.3, 84.2, 73.1 (2C), 61.3, 48.0, 45.6, 45.5, 38.2, 36.7, 31.8, 29.3, 29.1, 25.7, 22.7, 18.4, 14.2 ; IR (KBr): 3442, 3056, 2985, 1709, 1548, 1428, 1267, 897, 755 cm⁻¹; HRMS (ESI) exact mass calcd. for C₂₁H₃₃N₂O₈ (M+H)⁺ 441.2237, found (M+H)⁺ 441.2233.

Compound 1c: Yield, 91%; R_f (EtOAc), 0.50; ¹H NMR (CDCl₃, 500 MHz): δ 7.30-7.20 (m, 3H), 7.09 (d, 2H, J = 7.5 Hz), 6.00 (bs, 1H), 4.81 (quin, 1H, J =7.5 Hz), 4.66 (d, 1H, J = 9.0 Hz), 4.61 (s, 1H), 4.42-4.30 (m, 1H), 4.20-4.14 (m, 1H), 4.00-3.92 (m, 2H),

3.81-3.68 (m, 2H), 3.10 (dd, 1H, J = 14 Hz, 5.5 Hz), 2.99 (ddd, 1H, J = 14 Hz, 6.5 Hz, 2 Hz), 2.82 (s, 2H), 2.15 (sext, 2H, J = 7 Hz), 1.57-1.49 (m, 2H), 1.32-1.20 (m, 8H), 0.87 (t, 3H, J = 5.5 Hz), -OH protons did not appear; ¹³C NMR (CDCl₃, 125 MHz): δ 176.2, 173.6, 171.2 (2C),

136.0, 129.4 (2C), 128.7 (2C), 127.2, 84.24, 84.20, 73.1, 61.3, 52.9, 45.6, 45.5, 38.0, 37.8, 36.6, 31.8, 29.8, 29.2, 29.1, 25.7, 22.7, 14.2; IR (KBr): 3426, 3057, 2930, 2861, 1780, 1746, 1708, 1663, 1516, 1429, 1337, 1266, 1190, 1115, 1010, 898, 820, 744 cm⁻¹; HRMS (ESI) exact mass calcd. for $C_{27}H_{37}N_2O_8$ (M+H)⁺ 517.2550, found (M+H)⁺ 517.2561.

Compound 1d: Yield, 89%; R_f (EtOAc), 0.44; ¹H NMR (CDCl₃, 400 MHz): δ 6.04 (d, 1H, J = 8.8 Hz),

4.66 (s, 1H), 4.60 (s, 1H), 4.48-4.41 (m, 2H), 4.14-4.10 (m, 1H), 3.98 (d, 1H, *J* = 6.0 Hz), 3.94 (d, 1H, *J* = 5.6

Hz), 3.86-3.79 (m, 1H), 3.75-3.70 (m, 1H), 2.85 (s, 2H), 2.24 (sext, 2H, J = 4 Hz), 2.10 (sext, 1H, J = 6.4 Hz), 1.65-1.55 (m, 2H), 1.35-1.20 (m, 8H), 0.91 (d, 3H, J = 6.8 Hz), 0.88-0.84 (m, 6H), -2 OH protons did not appear; ¹³C NMR (CDCl₃, 100 MHz): δ 176.1 (2C), 174.1, 171.7, 84.3, 84.2, 73.1, 73.0, 60.9, 56.9, 45.6, 45.5, 38.0, 36.9, 31.8, 31.2, 29.8, 29.3, 29.1, 25.8, 22.7, 19.2, 17.7, 14.2 ; IR (KBr): 3681, 3299, 3056, 2928, 2860, 2360, 2312, 1709, 1518, 1429, 1266, 1193, 1009, 897, 746 cm⁻¹; HRMS (ESI) exact mass calcd. for C₂₃H₃₇N₂O₈ (M+H)⁺ 469.2550, found (M+H)⁺ 469.2570.

Compound 1e: Yield, 95%; R_f (EtOAc), 0.5; ¹H NMR (CDCl₃, 400 MHz): δ 5.95 (d, 1H, J = 8.8Hz), 4.66 (s, 1H), 4.60 (s, 1H), 4.55 (dt, 1H, J = 9.2, 4.8 Hz), 4.41-4.35 (m, 1H), 4.19-4.14 (m, 1H), 3.97

(q, 2H, J = 6 Hz), 3.84-3.61 (m, 2H), 2.85 (d, 2H, J = 1.6 Hz), 2.21 (dt, 2H, J = 7.2, 4.0 Hz), 1.65-1.55 (m, 4H), 1.44 (sext, 2H, J = 9.2 Hz), 1.35-1.20 (m, 8H), 0.93 (d, 6H, J = 6.8 Hz), 0.87 (t, 3H, J = 6.5 Hz) -OH proton did not appears; ¹³C NMR (CDCl₃, 100 MHz): δ 176.2 (2C), 173.8, 172.7, 84.3, 84.2, 73.1 (2C), 61.1, 50.6, 45.6, 45.5, 41.6, 38.1, 36.7, 31.8, 29.3, 29.1, 25.7, 25.0, 23.0, 22.7, 21.8, 14.2; IR (KBr): 3659, 3430, 3057, 2930, 2863, 1708, 1519, 1430, 1400, 1335, 1267, 1194, 1111, 1010, 898, 818, 742, 611 cm⁻¹; HRMS (ESI) exact mass calcd. for C₂₄H₃₉N₂O₈ (M+H)⁺ 483.2628, found (M+H)⁺ 483.2644.

Compound 2a: Yield, 91%; R_f (EtOAc) 0.50; ¹H NMR (CDCl₃, 400 MHz): δ 6.26 (d, 1H, J = 8 Hz), 4.55 (d, 2H, J = 6.0 Hz), 4.49-4.41 (m, 1H), 4.29-

4.17 (m, 2H), 3.89 (s, 2H), 3.72-3.68 (m, 2H), 2.79 (d, 2H, J = 3.6 Hz), 2.13 (td, 2H, J = 7.6 Hz, 3.2 Hz), 1.53 (quin, 2H, J = 7.2 Hz), 1.27 (d, 3H, J = 7.2 Hz), 1.25-1.15 (m, 20H), 0.81 (t, 3H, J = 6.8 Hz), -2 OH proton did not appear; ¹³C NMR (CDCl₃, 100 MHz): δ 176.3 (2C), 173.6, 172.7, 84.1 84.0, 72.8, 61.2 (2C), 47.9, 47.8, 45.6, 45.5, 38.1, 36.6, 32.0, 29.8, 29.7 (2C), 29.6, 29.5 (2C), 29.3, 25.7, 22.8, 18.2, 14.2; IR (KBr): 3313, 2923, 1705, 1532, 1190, 1108, 1012, 514 cm⁻¹; HRMS (ESI) exact mass calcd. for C₂₇H₄₄N₂O₈Na (M+Na)⁺ 547.6468, found (M+Na)⁺ 547.6461.

Compound 2b: Yield, 94%; R_f (EtOAc/Hexane), 0.50; ¹H NMR (CDCl₃, 400 MHz): δ 7.30-7.20 (m, 3H), 7.08 (d, 2H, J = 6.8 Hz), 5.98 (d, 1H, J = 8.0Hz), 4.84-4.78 (m, 1H), 4.66 (s, 1H), 4.61 (s, 1H), 4.38-4.34 (m, 1H), 4.19-4.14 (m, 1H), 3.95 (q, 2H, J

= 6.0 Hz), 3.82-3.69 (m, 2H), 3.11 (dd, 1H, J = 14.0 Hz, 5.6 Hz), 2.99 (dd, 1H, J = 14.0 Hz, 6.4 Hz), 2.82 (s, 2H), 2.20-2.09 (m, 2H), 1.58-1.48 (m, 2H), 1.32-1.18 (m, 20H), 0.87 (t, 3H, J = 6.4 Hz), -NH, -OH protons did not appear; ¹³C NMR (CDCl₃, 100 MHz): δ 176.2 (2C), 173.5, 171.2, 135.9, 129.4 (2C), 128.7 (2C), 127.2, 84.3, 84.2, 73.1, 61.3, 52.9, 45.6, 45.5, 37.9, 37.8, 36.6, 32.0, 29.8 (4C), 29.6, 29.5 (2C), 29.3, 25.7, 22.8, 14.3; IR (KBr): 3365, 3057, 2927, 2856, 1741, 1707, 1518, 1429, 1266, 1191, 1009, 897, 742 cm⁻¹; HRMS (ESI) exact mass calcd. for C₃₃H₄₉N₂O₈ (M+H)⁺ 601.7632, found (M+H)⁺ 601.7624.

Compound 2c: Yield, 93%; R_f (EtOAc), 0.50; ¹H NMR (CDCl₃, 400 MHz): δ 6.03 (d, 1H, J = 9.2 Hz), 4.68 (s, 1H), 4.60 (s, 1H), 4.50-4.46 (m, 2H), 4.20 (bs, 1H), 4.13-4.01 (m, 1H), 3.98 (d, 1H, J = 6.0 Hz),

3.93 (d, 1H, J = 6.0 Hz), 3.88-3.81 (m, 1H), 3.75-3.69 (m, 1H), 2.85 (s, 2H), 2.28-2.20 (m, 2H), 2.14-2.06 (m, 1H), 1.67-1.55 (m, 2H), 1.30-1.23 (m, 20H), 0.91 (d, 3H, J = 6.8 Hz), 0.87 (t, 3H, J = 6.8 Hz), 0.85 (d, 3H, J = 6.8 Hz), -OH protons did not appear; ¹³C NMR (CDCl₃, 100 MHz): δ 176.1 (2C), 174.1, 171.7, 84.2 (2C), 73.0 (2C), 60.8, 56.9, 45.6, 45.1, 37.9, 32.0, 31.3, 29.8 (2C), 29.7 (3C), 29.6, 29.5 (2C), 29.4, 25.8, 22.8, 19.2, 17.7, 14.2; IR (KBr): 3305, 3056, 2984, 2925, 2854, 1709, 1547, 1429, 1267, 897, 755 cm⁻¹; HRMS (ESI) exact mass calcd. for C₂₉H₄₉N₂O₈ (M+H)⁺ 553.3489, found (M+H)⁺ 553.3481. **Compound 2d:** Yield, 89%; R_f (EtOAc), 0.50; ¹H NMR (CDCl₃, 400 MHz): δ 5.86 (d, 1H, J = 8.4 Hz), 4.70 (s, 1H), 4.60 (s, 1H), 4.59-4.54 (m, 1H), 4.52-4.44 (m, 1H), 4.10 (dt, 1H, J = 9.6 Hz, 4.4 Hz), 4.02-

3.97 (m, 1H), 3.93 (d, 1H, J = 6.0 Hz), 3.92-3.83 (m, 1H), 3.77-3.67 (m, 1H), 2.85 (s, 2H), 2.27-2.16 (m, 2H), 1.66-1.55 (m, 6H), 1.45 (quin, 1H, J = 9.6 Hz), 1.31-1.23 (m, 20H), 0.97-0.91 (m, 6H), 0.88 (t, 3H, J = 6.8 Hz) -OH proton did not appear ; ¹³C NMR (CDCl₃, 100 MHz): δ 176.3 (2C), 173.9, 172.8, 84.1 (2C), 72.7 (2C), 61.1, 50.6, 50.5, 45.6, 45.5, 41.3, 38.1, 36.5, 32.0, 29.7 (2C), 29.6 (2C), 29.4 (2C), 29.3, 25.7, 24.9, 22.9, 22.7, 21.8, 14.2; IR (KBr): 3430, 3056, 2928, 2858, 1710, 1518, 1429, 1335, 1266, 1194, 1010, 897, 741 cm⁻¹; HRMS (ESI) exact mass calcd. for C₃₀H₅₁N₂O₈ (M+H)⁺ 567.3645, found (M+H)⁺ 567.3625.

Compound 2e: Yield, 84%; R_f (EtOAc), 0.50; ¹H NMR (CDCl₃, 400 MHz): δ 4.49 (s, 2H), 4.10 (bs, 2H), 3.85-3.83 (m, 2H), 3.64 (bs, 2H), 3.27 (bs, 1H), 2.76-2.73 (m, 2H), 2.15 (bs, 2H), 1.60-1.41 (m,

2H), 1.31-1.28 (m, 1H), 1.27-1.12 (m, 25H), 0.88 (bs, 6H), -OH, -NH protons did not appear; ¹³C NMR (CDCl₃, 100 MHz): δ 176.5 (2C), 174.4, 174.1, 84.0 (2C), 72.5, 60.4, 55.2, 45.5 (2C), 38.3, 37.5, 34.0, 31.9, 29.7, 29.62 (2C), 29.58, 29.5, 29.3, 29.2, 29.1, 26.3, 24.7, 22.7, 15.3, 14.4, 14.0; IR (KBr): 3315, 2953, 2921, 2851, 2474, 2362, 2342, 1737, 1703, 1464, 1434, 1400, 1328, 1193, 1157, 1005, 992, 885, 733 cm⁻¹; HRMS (ESI) exact mass calcd. for C₃₀H₅₁N₂O₈ (M+H)⁺ 567.3645, found (M+H)⁺ 567.3657.

Compound 3a: Yield, 89%; R_f (EtOAc), 0.30; ¹H NMR (CDCl₃, 400 MHz): δ 5.21 (bs, 1H), 4.66 (s, 2H), 4.30 (bs, 2H), 3.98 (s, 2H), 3.89 (bs, 1H), 3.83 (d, 2H, J = 4.8 Hz), 3.76 (bs, 2H), 2.88 (s, 2H), 1.44

(s, 9H) -OH protan did not appear; ¹³C NMR (CDCl₃, 100 MHz): δ 176.2 (2C), 170.5, 156.1, 84.2 (2C), 80.4, 73.2 (2C), 61.1, 45.5 (2C), 42.3, 38.2, 28.5 (3C); IR (KBr): 3350, 2980, 2929, 1770, 1694, 1528, 1406, 1268, 1165, 1015, 900, 757 cm⁻¹; HRMS (ESI) exact mass calcd. for C₁₇H₂₄N₂O₉Na (M+Na)⁺ 423.3763, found (M+Na)⁺ 423.3772.

Compound 3b: Yield, 91%; R_f (EtOAc), 0.30; ¹H NMR (CDCl₃, 400 MHz): δ 4.59 (s, 2H), 4.27 (t, 2H, J = 4.8 Hz), 4.24-4.14 (m, 1H), 3.91 (s, 2H), 3.78-3.68 (m, 2H), 2.82 (q, 2H, J = 6.8 Hz), 1.40 (s, 9H), 1.30 (d, 3H, J = 7.2 Hz), -NH, -OH protons did not appear; ¹³C NMR (CDCl₃, 100 MHz): δ 176.4 (2C), 173.1, 155.5, 83.9 (2C), 80.0, 72.7 (2C), 61.1, 49.1, 45.6, 45.5, 38.1, 28.3 (3C), 17.9; IR (KBr): 3510, 3371, 3056, 2980, 2931, 2860, 2595, 2505, 1743, 1696, 1519, 1441, 1343, 1266, 1166, 1109, 1065, 897, 746 cm⁻¹; HRMS (ESI) exact mass calcd. for C₁₈H₂₆N₂O₉Na (M+Na)⁺ 437.4033, found (M+Na)⁺ 437.4041

Compound 3c: Yield, 93%; R_f (EtOAc), 0.40; ¹H NMR (CDCl₃, 400 MHz): δ 7.31-7.28 (m, 2H), 7.26-7.18 (m, 1H), 7.15 (d, 2H, *J* = 7.2 Hz), 5.26 (d, 2H, *J* = 12.4 Hz), 5.16 (s, 2H), 4.97 (d, 1H, *J* = 8.0 Hz), 4.94 (d, 1H, *J* = 6.0 Hz), 4.38-4.28 (m, 1H), 4.29-

4.19 (m, 1H), 3.85-3.71 (m, 2H), 3.15 (dd, 1H, J = 13.6, 4.8 Hz), 2.98 (dd, 2H, J = 13.2, 6.8 Hz), 2.88 (s, 2H), 1.42 (s, 9H), -OH protan did not appear;(spectra and expansion not there) ¹³C NMR (CDCl₃+CD₃OD, 100 MHz): δ 176.4 (2C), 171.7, 155.5, 136.2, 129.4, 129.2, 128.5 (2C), 126.9, 83.9 (2C), 80.2, 72.6(2C), 61.1, 54.4, 45.5 (2C), 38.0, 37.8, 28.2 (3C); IR (KBr): 3516, 3371, 2924, 1700, 1519, 1448, 1345, 1294, 1176, 984, 746 cm⁻¹; HRMS (ESI) exact mass calcd. for C₂₄H₃₀N₂O₉Na (M+Na)⁺ 513.5014, found (M+Na)⁺ 513.5028.

Compound 3d: Yield, 93%; R_f (EtOAc), 0.33; ¹H NMR (CDCl₃, 400 MHz): δ 5.07 (d, 1H, J = 7.2Hz), 4.67 (s, 1H), 4.65 (s, 1H), 4.40-4.30 (m, 1H), 4.24-4.10 (m, 2H), 3.98 (d, 2H, J = 2.8 Hz), 3.82-

3.70 (m, 2H), 2.86 (s, 2H), 2.12-2.02 (m, 1H), 1.44 (s, 9H), 0.93 (d, 3H, J = 7.2 Hz), 0.85 (d, 3H, J = 6.4 Hz), -OH protons did not appear; ¹³C NMR (CDCl₃, 100 MHz): δ 175.9 (2C), 172.2, 156.0, 84.3, 84.2, 80.2, 73.3 (2C), 61.0, 58.6, 45.6 (2C), 38.2, 31.1, 28.5 (3C), 19.2, 17.5; IR (KBr): 3437, 3057, 2977, 2929, 2860, 1710, 1508, 1399, 1265, 1165, 1103, 1010, 898, 739 cm⁻¹; HRMS (ESI) exact mass calcd. for C₂₀H₃₀N₂O₉Na (M+Na)⁺ 465.4572, found (M+Na)⁺ 465.4572.

Compound 3e: Yield, 92%; R_f (EtOAc), 0.33; ¹H NMR (CDCl₃, 400 MHz): δ 5.03-4.93 (m, 1H), 4.66 (s, 2H), 4.65 (s, 1H), 4.37-4.27 (m, 2H), 4.26-4.17 (m, 2H), 3.98 (d, 2H, J = 2.8 Hz), 3.81-3.70 (m,

2H), 2.86 (q, 2H, J = 7.2 Hz), 1.67 (sep, 1H, J = 6.8 Hz), 1.60-1.52 (m, 1H), 1.51-1.44 (m, 1H), 1.43 (s, 9H), 0.93 (d, 6H, J = 6.4 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ 176.0 (2C), 173.3, 155.8, 84.2 (2C), 80.2, 73.3, 73.2, 61.1, 52.2, 45.6, 45.5, 41.5, 38.3, 28.5 (3C), 24.9, 23.1, 21.8; IR (KBr): 3364, 2949, 1705, 1634, 1519, 1445, 1397, 1167, 1112, 1012, 899, 727, 600 cm⁻¹; HRMS (ESI) exact mass calcd. for C₂₁H₃₂N₂O₉Na (M+Na)⁺ 479.4842, found (M+Na)⁺ 479.4818.

Compound 3f: Yield, 97%; R_f (EtOAc), 0.33; ¹H NMR (CDCl₃, 400 MHz): δ 5.10 (d, 1H, J = 9.2 Hz), 4.64 (s, 2H), 4.40-4.30 (m, 1H), 4.24-4.12 (m, 2H), 3.96 (s, 2H), 3.82-3.69 (m, 2H), 3.43 (bs, 2H), 2.87

(s, 2H), 1.86-1.77 (m, 1H), 1.42 (s, 9H), 1.39-1.30 (m, 1H), 1.19-1.06 (m, 1H), 0.88 (t, 6H, J = 7.2 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ 176.1 (2C), 172.2, 155.9, 84.2, 84.1, 80.2, 73.2, 73.1, 60.9, 58.1, 45.6 (2C), 38.1, 37.8, 28.4 (3C), 24.9, 15.6, 11.7; IR (KBr): 3476, 2967, 2930, 1780, 1696, 1527, 1398, 1164, 1111, 1008, 902, 858, 831, 780, 734, 697 cm⁻¹; HRMS (ESI) exact mass calcd. for C₂₁H₃₂N₂O₉Na (M+Na)⁺ 479.4842, found (M+Na)⁺ 479.4855.

3. SEM images and DLS analysis results of samples prepared under various conditions:

Figure SI-1. DLS histograms of 1b (F), 1c (G), 1d (H) and 1e (I) are shown.

Figure SI-2. SEM images of samples of **1c** made from acetone solutions of different concentrations A) 0.1 mg/1.5 mL, B) 0.5 mg/1.5 mL, C) 1.0 mg/1.5 mL, D) 1.5 mg/1.5 mL, and E) 2.0 mg/1.5 mL; Samples were prepared by directly drop-casting their acetone solutions on silica substrate. DLS histograms of solutions of **1c** at various concentrations: F) 0.5 mg/1.5 ml, G) 1.0 mg/1.5 mL, H) 1.5 mg/1.5 mL, and I) 2.0 mg/1.5 mL.

Figure SI-3. SEM images of samples of **1a** (A), **1b** (B), **1d** (C), and **1e** (D) prepared by directly dropcasting their methanol solution (1 mg/1.5 mL) on silica substrate. DLS of histogram of **1a** (E), **1d** (F), and **1e** (G) are also shown; image of sample of 1c in MeOH is given in Fig. SI-9.

Figure SI-4. SEM images of samples of 3a (A), 3b (B), 3d (C), 3e (D) and 3f (E), prepared by directly drop-casting their acetone solutions (1 mg/1.5 mL) on silica substrate; DLS histograms of samples of 3a (F), 3b (G), 3d (H), 3e (I) and 3f (J) in this solvent (1 mg/1.5 mL) are also shown.

Figure SI-5. SEM images of samples of 2a (A), 2b (B), 2c (C) and 2d (D) and 2e (E) prepared by directly drop-casting their acetone solutions (1 mg/1.5 mL) on silica substrate.

Figure SI-6. SEM images of samples of **2a** (A), **2b** (B), **2c** (C) and **2e** (E) prepared by directly dropcasting their methanol solutions (1 mg/1.5 mL) on silica substrate.

Figure SI-7. TEM images of sample of **1d** (C&D) prepared by directly drop-casting its acetone solution (1 mg/1.5 mL) on carbon coated copper grid.

4. Critical micellar concentration

Critical micellar concentration (cmc) was calculated by fluorescent probe-based method using pyrene in water. Solutions of **1a-e** in water with concentrations ranging from 0.3 mM to 5.0 mM were admixed with 0.125 mM solution (50 μ L) of pyrene in methanol in a quartz fluorescence cell and made up to a final volume of 3 mL. After exciting pyrene at 334 nm, its emission at 373 and 384 nm, corresponding to the first and third vibrational bands (I₁, I₃) respectively were noted. From the plots of I₃/I₁ vs. concentration of the lipid (Figure 8), the cmcs were measured

Figure SI-8. Plots of intensity of fluorescene emission I₃/I₁ vs concentration of the lipids A) 1a, B) 1b, C) 1c, D) 1d, E) 1e

Figure SI-9. SEM images of samples of **1c** from A) MeOH, B) THF, C) CHCl₃ and D) Water; prepared by directly drop-casting their methanol solution (1 mg/1.5 mL) on silica substrate.

5. Results from PXRD analysis:

Table SI-1	. Results	from	PXRD	analysis	of 1a-e
------------	-----------	------	------	----------	----------------

Compound	d values (Å)		(Å)	Arrangement	Lattice narameter (Å)
	d ₁	d ₂	d ₃		Lucico parameter (11)
1a	32.7	17.2	11.5	Lamellar	a=32.7
1b	116.1	48.4	37.1	Lamellar	a=116.1
1c	26.4	13.2	9.7	Lamellar	a=26.4
1d	32.5	16.7	11.1	Lamellar	a=32.5
1 e	24.3	12.3	9.3	Lamellar	a=24.3

6. Composition of Niosomal formulations:

Table SI-2. Composition of different formulations (lipid/methanol = $1 \text{ (mg)}/1.5 \text{ m}^2$	L)
---	----

amphiphiles	Amount of lipid (mg)	Cholesterol (mg)	Ibuprofen (mg)	Methanol (mL)
LCPC	15	7.5	15	22.5
NC1b	10	5	10	15
N1b	10	_	10	15
NC1c	10	5	10	15
N1c	10	_	10	15
NC1a	20	10	20	30
N1a	20	_	20	30
NC1e	15	7.5	15	22.5
N1e	15	_	15	22.5
NC1d	15	7.5	15	22.5
N1d	15	_	15	22.5

7. Niosomal formulations – particle size distribution and morphology:

Figure SI-10. SEM images of samples of LCPC (A), NC1a (B), NC1b (C), NC1c (D), NC1d (E) and NC1e (F) prepared by directly drop-casting these formulations on silica substrate. DLS histogram of LCPC (G), NC1a (H), NC1b (I), NC1c (J), NC1d (K) and NC1e (L) in phosphate buffer (Amphiphile: Drug: Cholesterol = 1: 1: 0.5, concentration 1mg of amphiphile/1.5 mL of buffer)

Figure SI-11. SEM images of samples of N1a (A), N1b (B), N1c (C), N1d (D) and N1e (E) prepared by directly drop-casting the liposomes without cholesterol, on silica substrate. DLS histogram of N1a (F), N1b (G), N1c (H), N1d (I) and N1e (J) in phosphate buffer (Amphiphile: Drug = 1:1, concentration 1mg of amphiphile/1.5 mL of buffer).

8. CryoTEM Images of 1c

Figure SI-12. A.Cryo TEM image of Amphiphile **1c** in water after thin film hydration method **B**. Cryo TEM image of Amphiphile **1c** alone entrapped with Ibuprofen in water. **C**. Cryo TEM image of **NC1c** in water

9. Drug loading and drug release studies:

 λ_{max} of Ibuprofen was determined in phosphate buffer at pH 7.2 and was found to be 223 nm. To make the calibration curve, different concentrations (5 to 30µg/mL) of this drug in phosphate buffer (pH 7.2) were prepared and their absorbances at 223 nm were measured using a UV spectrophotometer. The absorbance was plotted against concentration (µg/ml) to obtain the standard graph which is given below.

Figure SI-13. Calibration Curve of Ibuprofen in phosphate buffer of pH 7.2

Drug encapsulation efficiency: Ibuprofen-loaded vesicles were separated from un-entrapped drug by centrifuging at 10,000 rpm at 4 °C for 2 hr. The supernatant was taken and diluted three

times with phosphate buffer of pH 7.2. The concentration of Ibuprofen in the solution (supernatant) was determined by a UV spectrophotometer by noting the absorption at 223 nm. The absorbance was then converted to concentration/mL using standard calibration curve. The percentage of drug encapsulated was then calculated using the following equation: Encapsulation efficiency = (Drug.encapsulated / Total drug) x 100

Name	Trial 1	Trial 2	Trial 3	Mean encapsulation efficiency (%)
LCPC	78.9	78.8	78.2	78.6±0.3
NC1a	49.1	49.6	48.1	48.9±0.8
NC1b	57.3	56.5	56.6	56.8±0.4
NC1c	66.2	65.7	66.2	66.1±0.3
NC1d	65.8	64.9	65.4	65.4±0.4
NC1e	65.7	64.7	64.8	65.1±0.6
N1a	32.9	32.7	32.6	32.8±0.2
N1b	31.1	32.9	31.9	31.9±0.9
N1c	31.9	33.4	32.4	32.6±0.7
N1d	27.0	26.7	26.4	26.7±0.3
N1e	33.1	32.7	41.2	35.7±0.8

Table 3-SI. Drug encapsulation efficiency of various formulations (in triplicate)

Time (h)	Drug release (%)			
	LCPC	NC1c	NC1d	NC1e
0	0.9±0.4	0.7±0.3	0.5±0.9	0.0±0.8
1	6.6±3.6	8.0±0.5	9.0±1.5	3.4±0.7
2	9.8±0.2	13.9±0.9	10.6±0.5	6.8±0.6
3	13.2±0.8	15.9±0.6	13.0±0.6	7.5±0.4
4	16.8±0.3	17.9±0.3	13.8±0.4	8.0±0.1
5	19.7±0.6	19.2±0.6	14.2±1.8	8.7±0.3
6	22.3±0.9	20.1±0.8	14.6±2.1	9.2±0.2
8	27.3±0.4	22.8±0.5	16.7±0.8	10.4±0.0
10	30.8±0.5	25.4±0.8	18.8±0.6	13.0±0.6
12	33.2±0.0	28.4±0.8	20.6±1.8	15.5±0.5
24	49.6±0.8	46.0±0.9	34.8±0.5	23.5±0.5

Table 4-SI. Results from drug-release studies (procedure discussed in the main text).

Loading Content: Niosomes were prepared by thin film hydration method. Towards this, the lipid (**1a-e**) alone or in combination with cholesterol and Ibuprofen in 1:0.5:1 ratio was dissolved in methanol. Solvent was then removed by rotary evaporation under reduced pressure to get a thin film which was subsequently hydrated using phosphate buffer (pH 7.2). The resulting suspension was sonicated and then extruded through 1000 nm filters to get more-or-less uniformly-sized niosomes. 1 mL of suspension was centrifuged and the supernatant containing unentrapped drug was removed. To the resulting pellet, 0.5% solution of TritonX-100 was added and diluted to 1ml using phosphate buffer (pH 7.2). The solution was again centrifuged and supernatant was assessed to get the loading content by UV-Vis spectrophotometer. The absorbance was converted to concentration per mL using standard calibration curve. The percentage of drug encapsulated in the original aggregate was calculated by the following equation.

Loading content= (Drug loaded / Total drug) x 100

 Table 5-SI. Loading contents of different formulations

Formulation	Percent loading	Formulation	Percent loading
code	content	code	content
NC1a	19.6566±0.0096	N1a	10.3456±0.0456
NC1b	27.6683±0.0263	N1b	19.0654±0.0345
NC1c	43.4216±0.0223	N1c	30.0567±0.1123
NC1d	37.31±0.0456	N1d	21.0678±0.0243
NC1e	34.5283±0.0210	N1e	20.0341±0.8765

Stability Studies:

The suspensions of aggregates (**NC1a-NC1e**) prepared through the procedure give above (under loading content) were stored at 4^oC for 12 days and the loading content was calculated again to know their stability, especially to see whether there is any leakage of drug from the aggregates.

Table 6-SI. Variation in loading content on storage

Formulation	Percent loading		
code	efficiency		
NC1a	18.3909±0.7227		
NC1b	23.6090±1.4072		
NC1c	41.3636±0.9608		
NC1d	33.2181±0.3818		
NC1e	26.5363±0.6883		

Figure SI-14. (A) SEM images of samples of **NC1c**, (B) **NC1c** after adding Triton X 100,(C) **NC1c** after storing for 12 days in phosphate buffer

10. ¹H & ¹³C NMR spectra of various compounds:

¹³C NMR spectrum of compound **5**a

¹³C NMR spectrum of compound **5b**

¹³C NMR spectrum of compound **5**c

 $^{13}\mathrm{C}$ NMR spectrum of compound $\mathbf{5d}$

¹³C NMR spectrum of compound **5**e

¹³C NMR spectrum of compound **6a**

¹³C NMR spectrum of compound **6b**

¹³C NMR spectrum of compound **6c**

¹³C NMR spectrum of compound **6d**

¹³C NMR spectrum of compound **6e**

¹³C NMR spectrum of compound 7a

¹³C NMR spectrum of compound **7b**

¹³C NMR spectrum of compound 7c

¹³C NMR spectrum of compound **7d**

¹³C NMR spectrum of compound 7e

¹³C NMR spectrum of compound 8a

¹³C NMR spectrum of compound **8b**

¹³C NMR spectrum of compound 8c

¹³C NMR spectrum of compound 8d

¹³C NMR spectrum of compound 8e

¹³C NMR spectrum of compound 10a

¹³C NMR spectrum of compound **10b**

¹³C NMR spectrum of compound **10c**

¹³C NMR spectrum of compound **10d**

¹³C NMR spectrum of compound **10e**

¹³C NMR spectrum of compound **11a**

¹³C NMR spectrum of compound **11b**

¹³C NMR spectrum of compound **11c**

¹³C NMR spectrum of compound **11d**

¹³C NMR spectrum of compound **11e**

¹³C NMR spectrum of compound **12a**

¹³C NMR spectrum of compound **12b**

¹³C NMR spectrum of compound **12c**

¹H NMR spectrum of compound **12d**

¹³C NMR spectrum of compound **12e**

¹³C NMR spectrum of compound **12f**

¹³C NMR spectrum of compound **1a**

¹³C NMR spectrum of compound **1b**

¹³C NMR spectrum of compound **1**c

¹³C NMR spectrum of compound 1d

¹³C NMR spectrum of compound **1e**

¹³C NMR spectrum of compound **2a**

¹³C NMR spectrum of compound **2b**

¹³C NMR spectrum of compound **2**c

¹H NMR spectrum of compound **2d**

¹³C NMR spectrum of compound **2d**

¹³C NMR spectrum of compound **2e**

¹³C NMR spectrum of compound **3a**

¹³C NMR spectrum of compound **3b**

¹³C NMR spectrum of compound **3d**

¹³C NMR spectrum of compound **3**e

¹³C NMR spectrum of compound **3f**

¹³C NMR spectrum of compound **3**c

Evidence of H-bonded association in a mixture of Ibuprofen and 1c in CDCl₃

¹H NMR spectrum of Ibuprofen

lab kmmucsr-1c final -c7 iitm-Proton(-5tol5) CDCl3 /opt/topspin nmr 6

¹H NMR of compound 1c

Upfield shifting of aromatic signals on addition of Ibuprofen to its CDCl₃ solution

6.4 6.3 6.2 6.1 6.0 5.9 5.8 5.7 5.6 5.5 5.4 5.3 5.2 5.1 5.0 4.9 4.8 4.7 4.6 ppm

Downfield shift NH signal in 1c on addition of Ibuprofen

Upfield shifting carboxyl carbon in Ibuprofen and down-field shifting of amide carbonyl in 1c in their mixture in CDCl₃