Supporting information

Facile Synthesis of RGD-conjugated Unimolecular Micelles Based on Polyester

Dendrimer for Targeting Drug Delivery

Xiaoshan Fan^a, Weiwei Zhang^a, Zhiguo Hu^{a*}, Zibiao Li^{b*}

^aCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, People's Republic of China.

^bInstitute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, 138634 Singapore

Correspondence: Zhiguo Hu (zghu@htu.edu.cn); Z. Li (lizb@imre.a-star.edu.sg)

Scheme S1. Synthetic route to the support PS-2COOH according the literature¹.

Figure S1.¹H NMR spectra of the hybrid copolymers 1-PS-d-PPMA from G1 to G5 and

their corresponding intermediates

Figure S2. FT-IR spectra of the hybrid copolymers 1-PS-d-PPMA from G1 to G5 and their corresponding intermediates.

Figure S3. GPC traces of the copolymers (a) $1-PS-PPMA_{G1}$, (b) $1-PS-PPMA_{G2}$, (c) $1-PS-PPMA_{G3}$, (d) $1-PS-PPMA_{G4}$ and (e) $1-PS-PPMA_{G5}$.

Figure S4. GPC traces of (a) PPMA_{G5}-64COOH and (b) copolymer PPMA_{G5}-mPEG/MAPEG.

Reference:

1. X. S. Fan, Z. G. Hu, G. W. Wang, J. Polym. Sci., Part A: Polym. Chem., 2015, 53, 1762–1768.