Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2016

Supplementary Information

Light and reduction dual sensitive supramolecular self-assembly gene delivery system based on poly(cyclodextrin) and disulfide-containing azobenzene-terminated branched polycations

Qimin Jiang, Yunti Zhang, Renxi Zhuo, Xulin Jiang*

Key Laboratory of Biomedical Polymers of the Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China

*Corresponding author: Xulin Jiang

Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Luojia Hill, Wuhan 430072, P. R. China.

Tel.:+86-27-68755200; Fax: +86-27-68754509. E-mail address: xljiang@whu.edu.cn.

Fig. S1 ¹H NMR spectra of (A) tert-butyl-2-bromo-4-phenylazoanilide (Az-Br) and (B) N,N-bis(acryloyl)cystamine (CBA) in CDCl₃ at 25°C.

Fig. S2 Schematic preparation process of the Az-ss-BPDMs. Az-Br, *tert*-butyl-2-bromo-4-phenylazoanilide; CBA, *N*,*N*'-bis(acryloyl)cystamine; DMAEMA, (2-dimethylamino)ethyl methacrylate; Az-ss-BPDM, disulfide-containing azobenzene-terminated branched poly((2-dimethylamino) ethyl methacrylate); ATRP, atom transfer radical polymerization.

Fig. S3 SEC trace of the three azobenzene-terminated branched polymers in THF with similar $M_{\rm W}$.

Fig. S4 UV-Vis spectra of (A) Az-ss-BPDM and PCD/Az-ss-BPDM (CD/Az 2:1).

Fig. S5 Aqueous SEC traces (light scattering detection at 90°) of Az-ss-BPDM3 incubated with or without 100 mM DTT.

Fig. S6 UV-Vis spectra of PCD/Az-ss-BPDM before and after UV irradiation of 15 min.

Fig. S7 Cell viability in (A) HeLa, (B) HepG2 and (C) HEK 293T cell lines with different concentrations of azobenzene-terminated polycations in the absence of PCD and PEI (25 kDa). Data was shown as mean \pm SD (n=3).

•

Fig. S8 *In vitro* luciferase protein expression of Az-ss-BPDM3/DNA polyplexes with different PCD content in serum media at various N/P ratios in comparison with that PEI/DNA polyplexes at N/P ratio of 10 in (A) HeLa, (B) HepG2 and (C) HEK 293T cell lines. Data was shown as mean \pm SD (n=3).

Fig. S9 Effect of branching degree of disulfide-containing azobenzene-terminated polycations without PCD on luciferase protein expression in serum media at various N/P ratios in comparison with that PEI/DNA polyplexes at N/P ratio of 10 in (A) HeLa, (B) HepG2 and (C) HEK 293T cell lines. Data was shown as mean \pm SD (n=3).

Fig. S10 Confocal laser scanning images of HepG2 cells after 4 h incubation with polyplexes, (A) Az-ss-BPDM3, (B) PCD/Az-ss-BPDM3=2/1, (C) PCD/Az-ss-BPDM3=4/1 at N/P ratio of 10. (A_1-C_1) Blue fluorescence of nuclei stained with Hoechst. (A_2-C_2) Green fluorescently stained plasmid pcDNA3-Luc with YOYO-1 (10⁻⁵ M). (A_3-C_3) Merged images of green and blue fluorescence fields. The scale bar is 40 μ m.

Fig. S11 Influence of branching degree of disulfide-containing azobenzene-terminated polycations without PCD on cellular internalization in HepG2 cells after 4 h incubation with polyplexes by confocal laser scanning images: (A) Az–ss-BPDM1, (B)Az–ss–BPDM2 and (C) Az–ss–BPDM3 at N/P ratio of 10 in HepG2 cells. (A₁–C₁) Blue fluorescence of nuclei stained with Hoechst. (A₂–C₂) Green fluorescently stained plasmid pcDNA3-Luc with YOYO-1(10⁻⁶ M). (A₃–C₃) Merged images of green and blue fluorescence fields. The scale bar is 40 µm.

Fig. S12 Flow cytometry images of (A) untreated cells (control), (B) Az-ss-BPDM1/DNA, (C) Az-ss-BPDM2/DNA and (D) Az-ss-BPDM3/DNA polyplexes at N/P ratio of 10 in HepG2 cells.

Eq. S1

The NMR spectrum was used to determine the composition of ratio within the polymers structure via the following equations:

DMAEMA component (k) = $S_i/2$ CBA component $(m+n) = (S_h)/2$ CBA with free vinyl (m) = $(S_d + S_e + S_f)/3$ Branching CBA (n) = $[(S_h)/2] - [(S_d + S_e + S_f)/3]$ Initiator component (I) = $(S_a + S_b + S_c)/9$ Total content = k + n + m + ISa, Sb, Sc, Sd, Se, Sf, Sh and Si represent the peak areas of the related signals (Fig. 1). Therefore the percentage of each component within the polymer structure is a percentage of the total content, for instance: Degree of branching (DB) = n/(k + n + m + I)Pendent vinyl group residue $(R_p,\%) = m/(m+n)$