Supporting Information

Triple-responsive inorganic-organic hybrid microcapsules as a biocompatible smart platform for delivery of small molecules

Alexander S. Timin^{*a}, Albert R. Muslimov^b, Kirill V. Lepik^b, Natalia N. Saprykina^c, Vladislav S. Sergeev^{b,d}, Boris V. Afanasyev^b, Alexander D. Vilesov^{c,d}, Gleb B. Sukhorukov^{*a,d,e}

^aRASA center in Tomsk, Tomsk Polytechnic University, Lenin Avenue, 30, 634050, Tomsk, Russian Federation
^bFirst I. P. Pavlov State Medical University of St. Petersburg, Lev Tolstoy str., 6/8, 197022, Saint-Petersburg, Russian Federation
^cInstitution of Russian Academy of Sciences Institute of Macromolecular Compounds Russian Academy of Sciences (IMC RAS), Bolshoy prosp., 31, 199004, Saint-Petersburg, Russian Federation
^dRASA center in St. Petersburg, Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya, 29, 195251, St. Petersburg, Russian Federation
^eSchool of Engineering and Materials Science, Oueen Mary University of London, Mile End Road,

London E1 4NS, United Kingdom

*Corresponding authors:

Alexander S. Timin <u>a_timin@mail.ru</u>

Gleb B. Sukhorukov g.sukhorukov@qmul.ac.uk

Fig. S1 Zeta potential measurements of SiO_2/TiO_2 -coated (a) and (PARG/DEXS)₃ (b) capsules after each deposition step. The first measurement (layer 0) is the surface of the starting CaCO₃ microporous templates. PAGR: poly-arginine with positive charge; DEXS: dextran sulfate with negative charge; sol-gel coating: TiO₂/SiO₂ nanostructures with negative charge.

Fig. S2 SEM images of $(PARG/DEXS)_3$ (a) and SiO_2/TiO_2 -coated (b) capsules; TEM images of $CaCO_3@SiO_2/TiO_2$ -coated particle (c) and hollow SiO_2/TiO_2 -coated capsule after $CaCO_3$ removal (d).

Fig. S3 Thermogravimetric analysis (TGA) profiles of SiO₂/TiO₂-coated and (PARG/DEXS)₃ capsules.

Fig. S4 FTIR spectra of SiO₂/TiO₂-coated capsules, DEXS and PARG.

Fig. S5 CLSM images of SiO₂/TiO₂-coated capsules loading with FITC.

Fig. S6 UV-vis spectra of SiO₂/TiO₂-coated and (PARG/DEXS)₃ capsules.

Fig. S7 CLSM images of SiO_2/TiO_2 -coated capsules with Rh-B (red capsules) showing the enzymatic, ultrasound and UV-light influence on decomposition of capsules at different period of the time.

Fig. S8 CLSM images demonstrating degradation of SiO₂/TiO₂-coated capsules and Rh-B release when they incubated with HeLa cells for 24 h.

Fig. S9 CLSM images demonstrating degradation of SiO₂/TiO₂-coated capsules and Rh-B release when they incubated with MSCs for 24 h.