$Co_3O_4@CeO_2$ hybrid flower-like microspheres: a strong synergistic peroxidase-mimicking artificial enzyme with high sensitivity for glucose detection

Deshetti Jampaiah,^{‡a} T. Srinivasa Reddy,^{‡a} Victoria E. Coyle,^a Ayman Nafady,^b ^c and Suresh K. Bhargava^a*

^aCentre for Advanced Materials & Industrial Chemistry (CAMIC), School of Applied Sciences, RMIT University, GPO BOX 2476, Melbourne–3001,Australia. E-mail: suresh.bhargava@rmit.edu.in; Tel: +61 3 9925 3365 ^bChemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia ^cChemistry Department, Faculty of Science, Sohag University, Sohag 82524, Egypt

*Corresponding Author:

E-mail: suresh.bhargava@rmit.edu.in; Tel: +61 3 9925 3365

Fig. S1 SEM-EDX spectra for the (a) CeO₂, and (b) 10Co₃O₄@CeO₂ hybrid microspheres.

Table S1

The content of Co values of 10Co₃O₄@CeO₂ hybrid microspheres.

Catalyst	Designed	Calculated
	Content of	content of
	Co (wt%)	Co (wt%) ^a
10Co3O4@CeO2	10	9.95

^aThe metal content was tested by ICP-AES analysis.

Fig. S2 Nitrogen adsorption–desorption isotherms for the (a) CeO_2 , and (b) $5Co_3O_4@CeO_2$ (c) $10Co_3O_4@CeO_2$ (d) $20Co_3O_4@CeO_2$ and (e) Co3O4 catalysts.

Fig. S3 XPS spectra of CeO₂, $5Co_3O_4@CeO_2$, $10Co_3O_4@CeO_2$, $20Co_3O_4@CeO_2$, and Co_3O_4 catalysts (a) survey scan, (b) Ce 3d.

Fig. S4 Raman spectra of the CeO_2 and $10Co_3O_4@CeO_2$ microspheres.

Fig. S5 XPS spectra of CeO₂, $5Co_3O_4@CeO_2$, $10Co_3O_4@CeO_2$, $20Co_3O_4@CeO_2$, and Co_3O_4 samples (a) O 1s, (b) Co 2p.

Fig.S6 The peroxidase-like activity of HRP is dependent on (a) pH, (b) temperature.

Fig. S7 Catalytic activity of $10Co_3O_4@CeO_2$ hybrid microspheres in five successive recycles.

Fig. S8 (a) Powder XRD patterns and (b) Raman spectra of $10Co_3O_4@CeO_2$ hybrid microspheres after TMB substrate oxidation.

Fig. S9 Steady-state kinetic analyses using Michaelis-Menten and Lineweaver-Burk models (insets of figures) for HRP (1.5 ng/mL) by (a) varying the concentrations of TMB (100–1000 μ M) with a fixed amount of H₂O₂ (100 mM) and (b) varying the concentrations of H₂O₂ (10–150 mM) with a fixed amount of TMB (800 μ M).

Fig. S10 Cyclic voltammogram curves of a bare glassy carbon electrode (GCE) and GCE modified 10Co₃O₄@CeO₂ hybrid microspheres.

Fig. S11 Glucose concentration response curve for glucose detection using GO_x and the pure CeO₂ microspheres (inset: linear calibration plot for glucose). The error bars represent the standard deviation of three repeated measurements.