Supplementary Information

Clustering of Hydroxyapatite on Super-Twisted Collagen Microfibril under Mechanical Tension

Zhong Zhou, Dong Qian, Majid Minary-Jolandan*,**

Department of Mechanical Engineering, ** Alan G. MacDiarmid NanoTech Institute The University of Texas at Dallas, 800 W. Campbell R., Richardson, TX 75080, USA *Email: majid.minary@utdallas.edu

Atom	Charge ¹	Non-bonded van der Waals parameters ^{2, 3}
Ca	+2.0	$\varepsilon = 0.496 \text{ kJ/mol}, \sigma = 0.294 \text{ nm}$
Р	+2.6	$\varepsilon = 2.447 \text{ kJ/mol}, \sigma = 0.349 \text{ nm}$
O(P)	-1.4	$\varepsilon = 1.054 \text{ kJ/mol}, \sigma = 0.303 \text{ nm}$
O(H)	-1.6	$\varepsilon = 0.490 \text{ kJ/mol}, \sigma = 0.309 \text{ nm}$
Н	+0.6	$\varepsilon = 0.192 \text{ kJ/mol}, \sigma = 0.140 \text{ nm}$
Bond type		Bond parameters ^{2, 4}
P-O stretch		$r_0 = 0.157 \text{ nm}, k_b = 359824 \text{ kJ/mol/nm}^2$
O-P-O bend		$\theta_0 = 109.5^\circ, k_\theta = 1046 \text{ kJ/mol/rad}^2$
O-H stretch		$r_0 = 0.096 \text{ nm}, k_b = 438767 \text{ kJ/mol/nm}^2$

Supplementary Table S1. Force field parameters of HAP.

In Table S1, ε is the depth of the potential well of Lennard-Jones potential, and σ is the distance at which the van der Waals potential is zero.

Lennard-Jones potential: $V_{LJ} = 4\varepsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right]$

 r_0 is the equilibrium bond length for covalent bond stretching, and k_b is the force constant.

 θ_0 is the equilibrium bond angle for covalent bond angle bending, and k_0 is the force constant.

Refer to GROMACS⁵ and its manual for the formulations of the potential functions.

Supplementary Figure S1. Discrete HAP ion systems for building collagen microfibril-HAP composite. (a) Equivalent to 12 unit cells of HAP. (b) Equivalent to 96 unit cells of HAP, in the final model of collagen microfibril-HAP composite.

Supplementary Figure S2. Flow chart of simulation stages, with atomic configuration at the end of each stage.

Supplementary Figure S3. Comparison of number of hydrogen bonds within collagen and between collagen and water, for two systems at the same simulation time (one un-stretched configuration during 10 ns extra equilibration, and one configuration stretched for 3.5 ns to 10% followed by 6.5 ns extra equilibration).

Supplementary Figure S4. Histograms of the HAP cluster size distribution of the two configurations (after 10 ns extra NPT vs after 3.5 ns stretching to 10% plus 6.5 ns extra NPT). The abscissa is the cluster size intervals, and the ordinate is the number of clusters in each interval.

Supplementary Figure S5. Distribution of actual tensile strain of backbone C-C bonds, at nominal engineering strain of 10% in collagen microfibril. The majority (over 80%) of the C-C bonds experienced a strain less than 4%, and only 3 out of 3013 C-C bonds had a strain larger than 10%.

Supplementary Movies. 2 movies are available in the SI. These movies show the following:

Movie S1. Uniaxial tension of a D-period collagen microfibril and HAP cluster formation, followed by extra equilibration. For collagen microfibril, the final strain is 10% at 3.5 ns, and the pulling rate is 0.002 nm/ps. During 6.5 ns extra equilibration, collagen microfibril is kept at 10% strain by only fixing the N- and C- termini. Collagen chains are in cyan. In HAP minerals, Ca is in Green, P in Gold, O in Red, and H in White.

Movie S2. 10 ns extra equilibration of a D-period collagen microfibril and HAP model, without mechanical stretching. Collagen chains are in cyan. In HAP minerals, Ca is in Green, P in Gold, O in Red, and H in White.

Supplementary References

References

- 1. S. Hauptmann, H. Dufner, J. Brickmann, S. M. Kast and R. S. Berry, *Physical Chemistry Chemical Physics*, 2003, **5**, 635-639.
- 2. R. Bhowmik, K. S. Katti and D. Katti, *Polymer*, 2007, **48**, 664-674.
- 3. R. B. Best, X. Zhu, J. Shim, P. E. M. Lopes, J. Mittal, M. Feig and A. D. MacKerell, *Journal of Chemical Theory and Computation*, 2012, **8**, 3257-3273.
- 4. T.-J. Lin, *PhD dissertation, Department of Polymer Engineering, The University of Akron,* 2013.
- 5. H. J. C. Berendsen, D. van der Spoel and R. van Drunen, *Computer Physics Communications*, 1995, **91**, 43-56.