Supporting Information

$Poly\mbox{-}\gamma\mbox{-}glutamic\mbox{ acid-based GGT-targeting and surface}$

camouflage strategy for improving cervical cancer gene

therapy

JiaoTan, Huiyuan Wang, Fan Xu, Yingzhi Chen, Meng Zhang, Huige Peng, Xun Sun, Youqing Shen and Yongzhuo Huang*

Table. S1 Physicochemical characteristics of the nanoparticles.^{\triangle}

Particle	Size (nm)	ζ-Potential (mV)	PDI
PEI/pTRAIL	89.3±4.7	37.7±0.8	0.290±0.026
γ-PGA/PEI/pTRAIL	116.0±5.3	26.9±1.5	0.145±0.025

 $^{\triangle}$ Results are represented as mean ± standard deviation (n=3).

Fig. S1 Agarose gel electrophoresis. (a) The DNA mobility retardation assay. The lane labels correspond to (1) DNA marker, (2) naked DNA, (3) PEI/pDNA NPs, and (4) γ -PGA/PEI/pDNA NPs. (b) The gel electrophoresis of (1) naked DNA, (2) PEI/pDNA NPs, and (3) γ -PGA/PEI/pDNA NPs, with sequential pretreatment of DNase and heparin.

Fig. S2 Colloidal stability of γ -PGA/PEI/pDNA NPs in 50% serum (Macroscopic optical imaging).

Fig. S3 The expression of GGT on HeLa cells.

Fig. S4 Transfection of γ -PGA/PEI/pDNA with varying ratio (W_{γ -PGA}/W_{PEI}/W_{DNA}).