Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Multiple gold nanorods@hierarchically porous silica nanospheres for

efficient multi-drug delivery and photothermal therapy

Nan Li^a, Dechao Niu^{a,*}, Xiaobo Jia^a, Jianping He^a, Yu Jiang^a, Jinlou Gu^a, Zheng Li^b, Shiai Xu^{a,b}, Yongsheng Li^{a,*}

a Laboratory of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials

of Ministry of Education, East China university of Science and Technology, Shanghai 200237,

China

b School of Chemical Engineering, Qinghai University, Xining 810086, China

**Correspondence author:*

Dechao Niu, dcniu@ecust.edu.cn; Yongsheng Li, ysli@ecust.edu.cn

Supplementary figures

Fig. S1. Wide-angle XRD pattern of MGNRs@HPSNs.

Fig. S2. Energy dispersive spectroscopy (EDS) image for MGNRs@HPSNs.

Fig. S3. High angle annular dark field scanning transmission electron microscopy (HAADF-STEM) image (a) and corresponding nanoscale elemental mapping of Si (b₁), O (b₂) and Au (b₃) (Scale bar: 100 nm).

Fig. S4. Small-angle XRD pattern of MGNRs@HPSNs.

Fig. S5. TEM images of MGNRs@HPSNs-L at different magnifications (a,b) and the corresponding N₂ sorption isotherm (inset: NLDFT pore diameter distribution from the adsorption branch).

Fig. S6. TEM images of MGNRs@HPSNs-H at different magnifications (a,b) and the corresponding N₂ sorption isotherm (inset: NLDFT pore diameter distribution from the adsorption branch).

Samples	Specific	Total pore	Small-pore	Large-pore
	surface area	volume	diameter*	diameter*
	(m ² g)	(cm ³ /g)	(nm)	(nm)
MGNRs@HPSNs-L	564.6	1.24	2.7	13.6
MGNRs@HPSNs	504.9	1.11	2.7	13.2
MGNRs@HPSNs-H	372.2	0.89	2.6	12.8

 Table S1 Pore structural parameters of different samples.

*Pore diameter calculated by NLDFT method on the adsorption isotherm.

Fig. S7. Hydrodynamic diameter of different nanoparticles by DLS technique in water (inset: optical image for PEGylated MGNRs@HPSNs with laser).

Fig. S8. N₂ sorption isotherm (a) and corresponding TEM image (b) of PEGylated MGNRs@HPSNs (inset: NLDFT pore diameter distribution from the adsorption branch).

Fig. S9. Temperature profiles of the aqueous solutions of PEGylated MGNRs@HPSNs with laser irradiation of different powers for 5 min.

Fig. S10. The confocal laser scanning microscope (CLSM) images of SMMC-7721 cells after incubation for 4 h with the PEGylated MGNRs@HPSNs grafted with fluorescein isothiocyanate (FITC) groups.