Supporting Information

Versatile graphene-based photothermal nanocomposites for effectively capturing, killing bacteria, and destructing bacteria biofilms

XinghangJia,^{[-],a} Israr Ahmad,^{[-],a} Rong Yang^{*,ab}, and Chen Wang^{*,ab}

- a. CAS center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- b. Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
- [-] These authors contributed equally to this work.
- Corresponding authors: yangr@nanoctr.cn; wangch@nanoctr.cn; wangch@nanoctr.cn

Fig. S1.XPS spectra of C (a), Fe (b), N (c), and O (d) elements in the GO-IO-CS.

Fig. S2. The TGA - mass loss curves of CS, GO, GO-IO and GO-IO-CS.

Fig. S3. Size distrbu of GO-IO-CS in PBS.

Fig.S4. (A,B)Bacteria capturing and separating capability of GO-IO-CS with various concentrationstowards *E.coli* and*S.aureus*, respectively.(C) The related bacterial coloniestreated with 80 µg/mL GO-IO-CS during different magnetic separation time.

Fig.S5. (a,c): Photothermal effect of the GO-IO-CS and the GO-IO dispersion with NIR laser irradiation (The laser light was shut off after irradiation for10min). (b,d): Plot of cooling period after 600s versus negative natural logarithm of driving force temperature.

Fig.S6. The *E.coli* (A) and *S. aureus* (B) bacterial colonies treated with different concentrations of GO-IO-CS with or without NIR irradiation.

Fig. S7. The photographs of thestaining bacteria biofilm after treated with various materials atdifferent concentrations with or without NIR irradiation for 10 min. (A) for *S.aureus* biofilms, (B) for *E.coli*biofilms.

Fig.S8. The antibacterial ability of GO-IO-CS for 5 cycle photothermal antibacterial utilization (a) for *E. coli*, (b) for *S. aureus*. The TEM images after 5 recycle antibacterial utilization (c) for *E. coli*, (d) for *S. aureus*.

Elements	Atom ratio. %		
C 1s	72.712		
N 1s	3.643		
O 1s	22.120		
Fe 2p	1.526		

Table S1. Atom ratios of the GO-IO-CS based on the XPS survey measurements.

Table S2. The Zeta potential of GO-IO-CS

	CS	GO	GO-IO	GO-IO-CS			
Zeta potential (mV)	23.4 ± 3.0	-40.3 ± 0.7	-39.6 ± 2.0	15.1 ± 1.9			

Results are given as the mean standard deviation of 3 times.

Photothermal conversion efficiency:

The photothermal conversion efficiency (η) of GO-IO and GO-IO-CS were determined according to the previous reports.¹⁻³The GO-IO and GO-IO-CS were firstly exposed to 808nm NIR light for 10min.Then, the laser light was shut off and cooled to room temperature. The real-time temperature of GO-IO and GO-IO-CS were record by a temperature contact. Thus, the photothermal conversion was calculated according to the following equation (1):

$$\eta = \frac{hS(Tmax - Tsurr) - Q_0}{I(1 - 10^{-A_{808}})}$$
(1)
$$Q_0 = hS(T_{max} - T_{surr})$$
(2)

where h is the heat transfer coefficient, S is the surface area of sample container, T_{max} is the steady-state maximum temperature, T_{surr} is room temperature, Q_0 is the baseline energy input by the solvent and the sample container without any materials, I is the

laser power, and A_{808} is the absorbance of GO-IO or GO-IO-CS at 808 nm. The value of hS is calculated by the equation (3):

$$hS = \frac{m_d C_d}{\tau_s}$$
(3)

where $m_d(g)$ is the mass of the GO-IO or GO-IO-CS solution, $C_d(4.2 \text{ J g}^{-1} \degree C^{-1})$ is the heat capacity of water, and τ_s is the sample thermal time constant which was measured by the following equations(4) and (5):

$$t = -\tau_{s} \ln(\theta)$$
(4)
$$\theta = \frac{T - T_{surr}}{T_{max} - T_{surr}}$$
(5)

Therefore, the photothermal conversion efficiency of GO-IO and GO-IO-CS was shown in the following Table S3:

Table S3. The photothermal conversion efficiency of GO-IO and GO-IO-CS

	(g)	C_d (J ⁻¹⁰ C ⁻¹)	$ au_S$ (s)	hS (mW°C ⁻¹)	Q ₀ (mW)	A ₈₀₈	I (Wcm ⁻²)	η (%)
GO-IO	1	4.2	448.37	9.37	4.69	0.16	2	12.92
GO-IO-CS	1	4.2	261.80	16.04	8.02	0.41	2	32.86

Reference:

- J. Yu, W. Y. Yin, X. P. Zheng, G. Tian, X. Zhang, T. Bao, X. H. Dong, Z. L. Wang, Z. J. Gu, X. Y. Ma and Y. L. Zhao, *Theranostics*, 2015, 5, 931.
- W. Y. Yin, L. Yan, J. Yu, G. Tian, L. J. Zhou, X. P. Zheng, X. Zhang, Y. Yong, J. Li,
 Z. J. Guand Y. L. Zhao, *ACS Nano*, 2014, 8, 6922.
- X. J. Liu, B. Li, F. F. Fu, K. B. Xu, R. J. Zou, Q. Wang, B. J. Zhang, Z. G. Chen and J. Q. Hu, *Dalton Trans.*, 2014,43, 11709.