Supporting Information

Biocompatible supramolecular dendrimers bearing gadolinium-substituted polyanionic core for MRI contrast agents

Simin Zhang,[¶] Yanmei Zheng,[¶] Ding-Yi Fu, Wen Li, Yuqing Wu,* Bao Li,* and Lixin Wu

State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, China. E-mail: <u>libao@jlu.edu.cn</u>.

[¶]Both authors contributed equally to this paper.

Structure Characterization of the complexes

Fig. S1 ¹H NMR spectra of (a) D-1 and (D-1)₁₂KEuSiW₁₁, (b) D-2 and (D-2)₁₃ EuSiW₁₁ in CDCl₃, respectively.

Fig. S2 TGA curves of (a) $(D-1)_{13}$ Gd(SiW₁₁)₂ and (b) $(D-2)_{13}$ Gd(SiW₁₁)₂, respectively.

Fig. S3 IR spectra of (a) pure $K_{13}[Gd(SiW_{11}O_{39})_2]$, D-1, and (D-1)₁₃Gd(SiW_{11})_2, (b) pure $K_{13}Eu(SiW_{11}O_{39})_2]$, D-1, (D-1)₁₂KEu(SiW_{11})_2, (c) pure $K_{13}[Gd(SiW_{11}O_{39})_2]$, D-2, and (D-2)₁₃Gd(SiW_{11})_2, (d) pure $K_{13}Eu(SiW_{11}O_{39})_2]$, D-2, and (D-2)₁₃Eu(SiW_{11})_2 in KBr pellets.

Fig. S4 DLS curves of (a) D-1 (black) and (b) D-2 (red) in aqueous solution at 25°C with the concentration of 0.39 mM.

Fig. S5 USAXS pattern of (a) (D-1)₁₃GdSiW₁₁ and (b) (D-2)₁₃GdSiW₁₁ in aqueous solution.

Fig. S6 Zeta potential of (a) $(D-1)_{13}$ GdSiW₁₁, (b) $(D-2)_{13}$ GdSiW₁₁ and (c) pure GdSiW₁₁ in aqueous solution, where the concentration is fixed at 0.03 mM.

Fig. S7 Confocal laser scanning microscopic (CLSM) images of 293T cells after incubation with 0.01 mM (a, b) $(D-1)_{13}$ GdSiW₁₁ and (c, d) $(D-2)_{13}$ GdSiW₁₁ aggregations that loaded rhodamine B for 4 h under (a, c) bright-field, and (b, d) excitation at 541 nm.

Fig. S8 T₁-weighted images of Wistar rat at kidney after post intravenous injection of (a) $(D-1)_{13}GdSiW_{11}$ and (b) $(D-2)_{13}GdSiW_{11}$ for 30, 60, 90 and 180 min.

Table S1. The assignments of infrared spectra of $(D-1)_{13}GdSiW_{11}$ and $(D-2)_{13}GdSiW_{11}$ in

D-1	(D-1) ₁₃ GdSiW ₁₁	D-2	(D-2)13GdSiW11	Assignments	
(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)		
				O–H asym. str.	
2936	2923	2928	2921	CH ₃ asym. str.	
2874	2877	2872	2875	CH ₂ asym. str.	
2825	2819	2823	2821	CH ₂ sym. str.	
1596	1598	1595	1596	C=C framework str.	
1454	1456	1451	1450	CH ₂ scissoring	
1387	1384	1380	1379	CH ₃ scissoring	
1350	1350	1352	1350	CH ₂ wagging	
1322	1325	1328	1325	CH ₂ wagging	
1301	1301	1300	1299	CH ₂ twisting	
1248	1248	1246	1248	CH ₂ twisting	
1176	1175	1176	1174	=C-O-C asym. str.	
1116	1112	1110	1112	C–O–C stretching	
-	891	-	889	Si–O _a asym. str.	
1071	1071	1072	1071	=C-O-C asym. str.	
-	991		995	W–O _d sym. str.	
-	950		948	W–O _d asym. str.	
	867		867, 835	W–O₀–W asym. str.	
846	845	840	842	CH str.	
-	789, 761, 721		784, 757, 721	W–O _c -W asym. str.	
758		758		CH ₂ rocking	

		С	Н	N	Gd/Eu	W
(D-1) ₁₃ GdSiW ₁₁	Calcd. (%)	31.99	4.96	1.55	1.34	34.53
	Found (%)	31.56	4.96	1.50	1.31	34.25
(D-2) ₁₃ GdSiW ₁₁	Calcd. (%)	43.53	5.90	0.97	0.84	21.68
	Found (%)	43.67	5.85	0.96	0.83	21.54
(D-1) ₁₂ KEuSiW ₁₁	Calcd. (%)	30.78	4.74	1.50	1.35	36.00
	Found (%)	30.66	4.70	1.47	1.38	36.12
(D-2) ₁₃ EuSiW ₁₁	Calcd. (%)	43.54	5.90	0.97	0.82	21.69
	Found (%)	43.41	6.04	0.85	0.83	21.83

Table S2. Summary of elemental analysis.^a

^aElemental analytical results of C, H and N were obtained from organic elemental analysis, and the elemental analysis of Gd, Eu and W were performed on inductive coupled plasma emission spectrometer.