Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2017

## **Supplementary Information**

## Mesoporous Organosilica Nanoparticles with Large Radial Pores via an Assembly-Reconstruction Process in Bi-phase

Meng Dang,<sup>*a*</sup> Wei Li,<sup>*b*</sup> Yuanyi Zheng,<sup>*e*</sup> Xiaodan Su,<sup>*a*</sup> Xiaobo Ma,<sup>*a*</sup> Yunlei Zhang,<sup>*c*</sup> Qianqian Ni,<sup>*c*</sup> Jun

Tao,<sup>a</sup> Junjie Zhang,<sup>a</sup> Guangming Lu,<sup>\*cd</sup> Zhaogang Teng,<sup>\*acd</sup> and Lianhui Wang<sup>\*a</sup>

<sup>a</sup> Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P.R. China. \*E-mail: iamlhwang@njupt.edu.cn; Tel: +86-25-85866333; Fax: +86-25-85866396

 <sup>b</sup> Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P.R. China
<sup>c</sup> Department of Medical Imaging, Jinling Hospital, School of Medicine, Nanjing University Nanjing 210002, P.R. China, \*E-mail: cjr.luguangming@vip.163.com
<sup>d</sup> State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China, \*Email: tzg@fudan.edu.cn

<sup>e</sup> Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China



**Figure S1.** (a) Hydrodynamic diameter and (b) <sup>13</sup>C MAS NMR spectrum of the ethane-bridged large pore MONs.



**Figure S2.** (a-d) TEM and corresponding elemental mapping images of b) silicon, c) oxygen, d) carbon of the large-pore PMO nanoparticle.



**Figure S3.** Hydrodynamic diameters of the large pore MONs prepared with different CTAB concentrations.



**Figure S4.** TEM images of the traditional (a) MSNs and (b) amorphous silica colloids. The diameters of the MSNs and amorphous silica colloids are 247 nm and 242 nm, respectively.



**Figure S5.** N<sub>2</sub> absorption-desorption isotherms, and pore size distribution curve of MSNs (a, c) and amorphous silica colloids (b, d).



**Figure S6.** (a) The zeta potentials of the ethane-bridged MONs, COOH modified MONs (MONs-COOH), and PEI modified MONs (MONs-PEI). (b) Gel retardation assay of siRNA loaded by the large pore MONs. Bands from left to right represent different weight ratios of MONs to siRNA (0, 2, 4, 8, 16, 32).