Supporting Information

Preferential Formation of Columnar Mesophases via Peripheral Modification of Discotic π -Systems with Immiscible Side Chain Pairs

Tsuneaki Sakurai,* Yusuke Tsutsui, Kenichi Kato, Masaki Takata, and Shu Seki*

Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo-ku, Kyoto 615-8510, Japan.

Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.

RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan.

*Correspondence and requests for materials should be addressed to Tsuneaki Sakurai (sakurai-t@moleng.kyoto-u.ac.jp) and Shu Seki (seki@moleng.kyoto-u.ac.jp).

Table of Contents

1.	Ge	neral	
2.	Sy	nthesis	S4
2.	.1.	Summarized Synthetic Schemes	
2.	.2.	Synthesis of Compound 1	S6
2.	.3.	Synthesis of Compound 2	S6
2.	.4.	Synthesis of Compound 3	
2.	.5.	Synthesis of Compound 4	
2.	.6.	Synthesis of Compound 5_{C12}	
2.	.7.	Synthesis of Compound 5 _{TEG}	
2.	.8.	Synthesis of Compound 6_{C12}	
2.	.9.	Synthesis of Compound 6 _{TEG}	
2.	.10.	Synthesis of G0-Type PDI Derivatives	S10
2.	.11.	Synthesis of Compound 7	S11
2.	.12.	Synthesis of Compound 8 _{C12}	S11
2.	.13.	Synthesis of Compound 8 _{TEG}	S12
2.	.14.	Synthesis of Compound 9_{C12}	S12
2.	.15.	Synthesis of Compound 9 _{TEG}	S13
2.	.16.	Synthesis of Compound 10_{C12}	S14
2.	.17.	Synthesis of Compound 10_{TEG}	S14
2.	.18.	Synthesis of G1-Type PDI Derivatives	S15
2.	.19.	Synthesis of G0-Type NDI derivatives	S16
3.	Su	oporting Figures	S18
3.	.1.	Differential Scanning Calorimetry	S18
3.	.2.	Variable Temperature X-ray Diffraction Analysis	
3.	.3.	Polarized Optical Microscopy	S35
4.	Su	oporting References	S35

1. General

Unless otherwise noted, all commercial reagents were purchased from Wako Pure Chemical Industries Ltd., Tokyo Chemical Industry Co. Ltd. and Sigma-Aldrich Co. and used as received. The detailed synthetic schemes are described in the supplementary material. Column chromatography was performed on Silica Gel 60N (spherical, neutral) from Kanto Chemicals, or silica gel PSQ 60B (spherical, neutral) from Fuji Silysia Chemical Ltd. TLC analyses were carried out on aluminum sheets coated with silica gel 60 (Merck 5554). Recycling preparative size-exclusion chromatography (SEC) was performed by using JAIGEL 1H and 2H polystyrene-gel columns on a JAI model LC-9210NEXT recycling preparative HPLC system. ¹H-NMR and ¹³C-NMR spectra were recorded in CDCl₃ on a JEOL model AL-400 spectrometer, operating at 400 and 100 MHz, respectively, where chemical shifts were determined with respect Electronic absorption spectra to tetramethylsilane (TMS) or CHCl₃ as an internal reference. were recorded on a JASCO model V-570 spectrometer. Polarized optical micrographs were recorded on a Nikon model ECLIPSE E600FN polarized optical microscope equipped with a hand-made hot stage and KPI model TC02 temperature controller. DSC measurements were performed on a Mettler model DSC 822e differential scanning calorimeter. Cooling and heating profiles were recorded and analyzed with a Mettler model STARe system. X-ray diffraction measurements were carried out using a synchrotron radiation X-ray beam with a wavelength of 0.108 nm on BL44B2 at the Super Photon Ring (SPring-8, Hyogo, Japan). A large Debye-Scherrer camera was used in conjunction with an imaging plate as a detector, and all diffraction patterns were recorded with a 0.01 ° step in 2θ . During the measurements, samples were put into a 0.5-mm thick glass capillary and rotated to obtain a homogeneous diffraction pattern. The exposure time to the X-ray beam was 3 min. The temperature was controlled by high-temperature or low-temperature N₂ gas flow. Heating and cooling process was carried out at a rate of 10 °C min⁻¹ and annealed at the target temperature for 2 min prior to the beam exposure.

2. Synthesis

2.1. Summarized Synthetic Schemes

Reagents and Conditions: (a) TBSCl, imidazole, DMF, 90 °C; (b) LiAlH₄, THF, 20 °C; (c) NBS, PPh₃, CH₂Cl₂, 20 °C; (d) potassium phthalimide, DMF, 80 °C; (e) 1-bromododecane, K₂CO₃, KF, DMF, 80 °C; (f) TsO(CH₂CH₂O)₃Me, K₂CO₃, KF, DMF, 80 °C; (g) H₂N-NH₂·H₂O, EtOH, reflux; (h) **6**_{C12}, **6**_{TEG}, imidazole, pyridine, 90 °C.

Synthesis of G1-Type Perylenediimide Derivatives

Reagents and Conditions: (i) TBAF, THF, 0 °C; (j) SOCl₂, DMF, CH₂Cl₂, 0 °C; (k) 7, K₂CO₃, DMF, 80 °C; (l) H₂N-NH₂·H₂O, EtOH, reflux; (m) 10_{C12} , 10_{TEG} , imidazole, pyridine, 90 °C.

Synthesis of G0-Type Naphthalenediimide Derivatives

Reagents and Conditions: (n) 6_{C12}, 6_{TEG}, imidazole, pyridine, 90 °C.

2.2. Synthesis of Compound 1

To a DMF solution (100 mL) of a mixture of methyl gallate (10.1 g, 54.7 mmol) and imidazole (14.8 g, 217.3 mmol) was added *tert*-butyldimethylsilyl chloride (31.8 g, 211.0 mmol), and the mixture was stirred at room temperature for 10 h under N₂. Then, the reaction mixture was poured into water and extracted with toluene. An organic extract was dried over Na₂SO₄, and evaporated to dryness under reduced pressure, to allow isolation of **1** as white solid (30.3 g, 57.5 mmol, quant.). ¹H NMR (CDCl₃) δ 0.13 (s, 6H, 4-Si(CH₃)₂C(CH₃)₃), 0.23 (s, 12H, 3,5-Si(CH₃)₂C(CH₃)₃), 0.94 (s, 18H, 3,5-Si(CH₃)₂C(CH₃)₃), 0.98 (s, 9H, 4-Si(CH₃)₂C(CH₃)₃), 3.85 (s, 3H, OCH₃), 7.20 (s, 2H, Ar-H).

2.3. Synthesis of Compound 2

To a THF solution (73 mL) of **1** (10.0 g, 19.1 mmol) was slowly added LiAlH₄ (1.3 g, 33.2 mmol), and the mixture was stirred at room temperature for 5 h under N₂. Then, water was added dropwise and the reaction mixture was filtered off from an insoluble fraction. The residue was extracted with CH₂Cl₂, dried over Na₂SO₄, and evaporated to dryness to allow **2** as white solid (6.7 g, 13.5 mmol, 71%). ¹H NMR (CDCl₃) δ 0.11 (s, 6H, 4-Si(CH₃)₂C(CH₃)₃), 0.20 (s, 12H, 3,5-Si(CH₃)₂C(CH₃)₃), 0.94 (s, 18H, 3,5-Si(CH₃)₂C(CH₃)₃), 0.99 (s, 9H, 4-Si(CH₃)₂C(CH₃)₃), 4.49 (d, *J* = 0.1 Hz, 2H, Ar-CH₂), 6.49 (s, 2H, Ar-H).

2.4. Synthesis of Compound 3

To a CH₂Cl₂ solution (68 mL) of **2** (11.3 g, 22.7 mmol) and triphenylphosphine (7.2 g, 27.3 mmol) at 0 °C was added *N*-bromosuccinimide (2.9 g, 16.1 mmol), and the mixture was stirred at room temperature for 2 h. Then, the reaction mixture was evaporated to dryness under reduced pressure, and the residue was washed with MeOH to allow isolation of **3** as pale pink solid (10.8 g, 19.3 mmol, 85%). ¹H NMR (CDCl₃) δ 0.11 (s, 6H, 4-Si(CH₃)₂C(CH₃)₃), 0.21 (s, 12H, 3,5-Si(CH₃)₂C(CH₃)₃), 0.93 (s, 18H, 3,5-Si(CH₃)₂C(CH₃)₃), 0.98 (s, 9H, 4-Si(CH₃)₂C(CH₃)₃), 4.35 (s, 2H, Ar-CH₂), 6.52 (s, 2H, Ar-H).

2.5. Synthesis of Compound 4

To a DMF solution (37 mL) of **3** (10.4 g, 18.6 mmol) was added potassium phthalimide (3.5 g, 18.6 mmol) under N₂, and the mixture was stirred at 80 °C for 30 min. Then, the reaction mixture was poured into water and extracted with toluene. The organic extract was dried over Na₂SO₄ and evaporated to dryness under reduced pressure. The residue was subjected to column chromatography on silica gel using hexane/CH₂Cl₂ (1/1 v/v) as an eluent, and then recrystallized from EtOH, to allow isolation of **4** as white needle crystal (8.6 g, 13.6 mmol, 73%). ¹H NMR (CDCl₃) δ 0.08 (s, 6H, 4-Si(CH₃)₂C(CH₃)₃), 0.18 (s, 12H, 3,5-Si(CH₃)₂C(CH₃)₃), 0.88 (s, 18H, 3,5-Si(CH₃)₂C(CH₃)₃), 0.97 (s, 9H, 4-Si(CH₃)₂C(CH₃)₃), 4.65 (s, 2H, Ar-CH₂), 6.58 (s, 2H, Ar-H), 7.71 (dd, 2H, phth-H), 7.85 (dd, 2H, phth-H).

2.6. Synthesis of Compound 5_{C12}

To a DMF solution (5 mL) of **4** (2.0 g, 3.2 mmol) were successively added potassium fluoride (830 mg, 14.3 mmol), potassium carbonate (2.0 g, 14.3 mmol), and 1-bromododecane (2.9 g, 11.4 mmol), and the mixture was stirred at 80 °C for 18 h under N₂. Then, the reaction mixture was filtered off from an insoluble fraction and evaporated to dryness under reduced pressure, and the residue was subjected to column chromatography on silica gel using CH₂Cl₂/hexane (2/1 v/v) as an eluent, to allow isolation of **5**_{C12} as pale yellow solid (0.97 g, 1.2 mmol, 38%). ¹H NMR (CDCl₃) δ 0.88 (t, 9H, O(CH₂)₁₁CH₃), 1.20–1.37 (m, 48H, OCH₂CH₂CH₂(CH₂)₈CH₃), 1.38–1.48 (m, 6H, OCH₂CH₂CH₂CH₂), 1.64–1.84 (m, 6H, OCH₂CH₂), 3.89 (t, 2H, 5-OCH₂), 3.95 (t, 4H, 3,4-OCH₂), 4.72 (s, 2H, ArCH₂), 6.66 (s, 2H, Ar-H), 7.71 (dd, 2H, phth-H), 7.85 (dd, 2H, phth-H).

2.7. Synthesis of Compound 5_{TEG}

To a DMF solution (5 mL) of 4 (2.0 g, 3.2 mmol) were successively added potassium fluoride (940 mg, 16.1 mmol), potassium carbonate (2.2 g, 16.1 mmol) and 1-tosyltriethylene glycol (4.6 g, 14.4 mmol) and the mixture was stirred at 90 °C for 20 h under N_2 . Then, the reaction mixture was filtered off from an insoluble fraction and evaporated to dryness under reduced pressure, and

the residue was subjected to column chromatography on silica gel using EtOAc/MeOH (100/5 v/v) as an eluent, to allow isolation of S_{TEG} as pale yellow liquid (1.91 g, 2.6 mmol, 83%). ¹H NMR (CDCl₃) δ 3.36 (s, 3H, 4-OCH₃), 3.37 (s, 6H, 3,5-OCH₃), 3.50–3.57 (m, 6H, OCH₂CH₂OCH₃), 3.61–3.68 (m, 12H, OCH₂CH₂OCH₂CH₂OCH₃), 3.68–3.78 (m, 8H, 3,5-ArOCH₂CH₂OCH₂, 4-ArOCH₂CH₂OCH₂), 3.83 (t, *J* = 4.9 Hz, 4H, 3,5-ArOCH₂CH₂O, 4.09 (t, *J* = 5.4 Hz, 2H, 4-ArOCH₂), 4.14 (t, *J* = 5.1 Hz, 4H, 3,5-ArOCH₂), 4.72 (s, 2H, ArCH₂), 6.68 (s, 2H, Ar-H), 7.72 (dd, 2H, phth-H), 7.85 (dd, 2H, phth-H).

2.8. Synthesis of Compound 6_{C12}

To a solution of EtOH (3.8 mL) of 5_{C12} (110 mg, 0.13 mmol) was added 98% hydrazine monohydrate (0.1 mL), and the reaction mixture was refluxed for 3 h under N₂. Then, the reaction mixture was poured into CH₂Cl₂, filtered off from an insoluble fraction and evaporated to dryness. The residue was directly used for the next reaction without further purification.

2.9. Synthesis of Compound 6_{TEG}

To a solution of EtOH (3.8 mL) of 5_{TEG} (100 mg, 0.14 mmol) was added 98% hydrazine monohydrate (0.1 mL), and the reaction mixture was refluxed for 3 h under N₂. Then, the reaction mixture was poured into CH₂Cl₂, filtered off from an insoluble fraction and evaporated to dryness. The residue was directly used for the next reaction without further purification.

2.10. Synthesis of G0-Type PDI Derivatives

To a pyridine solution (0.8 mL) of a mixture of 6_{C12} (87 mg, 0.13 mmol), 6_{TEG} (79 mg, 0.13 mmol), and imidazole (0.4 g, 6.1 mmol) was added 3,4,9,10-perylenetetracarboxylic dianhydride (52 mg, 0.13 mmol), and the reaction mixture was stirred at 90 °C for 18 h under N₂. Then, the reaction mixture was evaporated to dryness under reduced pressure, and the residue was subjected to column chromatography on silica gel using CHCl₃/hexane (10/1 v/v) to CHCl₃/MeOH (20/1 v/v) as eluents, where the three orange fractions were collected and evaporated to dryness under reduced pressure, respectively. After the purification with recycling preparative size-exclusion chromatography using CHCl₃ as an eluent, the first fraction was reprecipitated from CHCl₃/MeOH to allow isolation of PDI_{Cl2/Cl2 G0} (50 mg, 30 µmol, 22% for two steps), the second fraction was reprecipitated from CHCl₃/MeOH to allow isolation of **PDI**_{C12/TEG G0} (51 mg, 31 µmol, 24% (two steps)), and the third fraction was reprecipitated from CHCl₃/hexane to allow isolation of PDI_{TEG/TEG G0} (27 mg, 17 µmol, 13% for two steps) as red substances. **PDI**_{C12/C12 G0}: ¹H NMR (CDCl₃) δ 8.43 (d, 4H, perylene-H), 8.19 (d, 4H, perylene-H), 6.87 (s, 4H, Ar-H), 5.27 (s, 4H, ArCH₂), 4.03 (t, J = 6.3 Hz, 8H, 3,4-OCH₂), 3.91 (t, J = 6.6 Hz, 4H, 5-OCH₂), 1.65–1.86 (m, 12H, OCH₂CH₂), 1.39–1.53 (m, 12H, OCH₂CH₂CH₂), 1.19–1.39 (m, 96H, OCH₂CH₂CH₂(CH₂)₈CH₃), 0.83–0.90 (m, 18H, O(CH₂)₁₁CH₃). ¹³C NMR (CDCl₃) δ 163.1 (C=O), 153.2 (ArC-3), 138.1 (ArC-4), 134.3 (ArC-1), 132.2, 131.4, 129.0, 126.0, 123.2, 122.9 (PDI-C), 108.6 (ArC-2), 73.6 (ArOCH2-4), 69.4 (ArO-CH2-3,5), 44.0 (ArCH2N), 32.1, 30.5, 29.90, 29.83, 29.79, 29.66, 29.53, 29.47, 26.33, 26.30, 22.83, 22.78 (CH₂), 14.3, 14.2 (CH₃). Anal: Calcd. for C₁₁₀H₁₆₆N₂O₁₀: C, 78.81; H, 9.98; N, 1.67. Found: C, 78.84; H, 10.11; N, 1.64. MALDI-TOF MS m/z calcd for $C_{110}H_{166}N_2O_{10}$ [M]⁻ 1675.25, found 1675.15. **PDI**_{C12/TEG G0}: ¹H NMR (CDCl₃) δ 8.43 (m, 4H, perylene-H), 8.20 (m, 4H, perylene-H), 6.87 (s, 4H, Ar-H), 5.28 (s, 4H, ArCH₂), 4.19 (t, J = 4.9 Hz, 4H, 3,5-ArOCH₂), 4.11 (t, J = 5.1 Hz, 2H, 4-ArOCH₂), 4.03 (t, J

= 6.6 Hz, 4H, 3,4-OCH₂), 3.91 (t, J = 6.6 Hz, 2H, 5-OCH₂), 3.86 (t, J = 4.9 Hz, 4H, 3,5-ArOCH₂CH₂), 3.68–3.78 (m, 8H, 3,5-ArOCH₂CH₂OCH₂, 4-ArOCH₂CH₂OCH₂), 3.59–3.68 (m, 12H, OCH₂CH₂OCH₂CH₂OCH₃), 3.49–3.56 (m, 6H, OCH₂CH₂OCH₃), 3.35 (s, 6H, 3,5-OCH₃), 3.34 (s, 3H, 4-OCH₃), 1.65–1.86 (m, 6H, OCH₂CH₂), 1.39–1.53 (m, 6H, OCH₂CH₂CH₂), 1.19–1.39 (m, 48H, OCH₂CH₂CH₂(CH₂)₈CH₃), 0.83–0.91 (m, 9H, O(CH₂)₁₁CH₃). ¹³C NMR (CDCl₃) δ 163.28, 163.26 (C=O), 153.2, 152.7 (ArC-3), 138.2, 138.1 (ArC-4), 134.6, 134.5 (ArC-1), 132.6, 132.2, 131.6, 131.5, 129.3, 129.2, 126.3, 126.2, 123.31, 123.27, 123.11, 123.07 (PDI-C), 109.3, 108.5 (ArC-2), 73.6, 72.4, 72.1, 70.9, 70.8, 70.67, 70.65, 69.9, 69.4, 69.0 (ArOCH₂-4, ArO-CH₂-3,5, and OCH₂), 59.1 (OCH₃), 44.2, 43.9 (ArCH₂N), 32.1, 30.5, 29.9, 29.8, 29.6, 29.5, 26.3, 22.8 (CH₂), 14.2 (CH₃). Anal: Calcd. for C₉₅H₁₃₆N₂O₁₉: C, 70.87; H, 8.51; N, 1.74. Found: C, 70.22; H, 8.45; N, 1.76. MALDI-TOF MS m/z calcd for $C_{95}H_{136}N_2O_{19}$ [M]⁻ 1608.97, found 1608.89. **PDI**_{TEG/TEG G0}: ¹H NMR (CDCl₃) δ 8.54 (d, 4H, perylene-H), 8.40 (d, 4H, perylene-H), 6.85 (s, 4H, Ar-H), 5.28 (s, 4H, ArCH₂), 4.18 (t, J = 5.1 Hz, 8H, 3,5-ArOCH₂), 3.85 (t, J = 5.1 Hz, 8H, 3,5-ArOCH₂CH₂), 4.10 (t, J = 5.1 Hz, 4H, 4-ArOCH₂), 3.68–3.78 (m, 12H, 3,5-ArOCH₂CH₂OCH₂, 4-ArOCH₂CH₂OCH₂), 3.59–3.67 (m, 24H, OCH₂CH₂OCH₂CH₂OCH₃), 3.49–3.56 (m, 12H, OCH₂CH₂OCH₃), 3.36 (s, 12H, 3,5-OCH₃), 3.34 (s, 6H, 4-OCH₃). ¹³C NMR (CDCl₃) δ 163.4 (C=O), 152.7 (ArC-3), 138.3 (ArC-4), 134.8 (ArC-1), 132.6, 131.8, 129.5, 126.6, 123.5, 123.3 (PDI-C), 109.5, 109.3 (ArC-2), 72.5, 72.1, 71.0, 70.9, 70.71, 70.67, 70.0, 69.1 (ArOCH₂-4, ArO-CH₂-3,5, and OCH₂), 59.1 (OCH₃), 43.9 (ArCH₂N). Anal: Calcd. for C₈₀H₁₀₆N₂O₂₈: C, 62.24; H, 6.92; N, 1.81. Found: C, 61.77; H, 6.65; N, 1.88. MALDI-TOF MS m/z calcd for C₈₀H₁₀₆N₂O₂₈ [M]⁻ 1542.69, found 1542.63.

2.11. Synthesis of Compound 7

To a THF solution (12 mL) of 4 (300 mg, 0.48 mmol) at 0 °C was added dropwise THF solution of tetrabutylammonium fluoride (1 M, 2.9 mL), and the mixture was stirred at room temperature

for 30 min under N_2 . Then, the reaction mixture was poured into water and extracted with ether. The organic extract was dried over Na_2SO_4 and evaporated to dryness under reduced pressure. The residue was washed with hexane and directly used for the next reaction without further purification.

2.12. Synthesis of Compound 8_{C12}

To a CH₂Cl₂ (10 mL) solution of a mixture of 3,4-bis(dodecyloxy)benzylalcohol (1.0 g, 2.1 mmol) (*S1*) and catalytic amount of DMF at 0 °C was added dropwise SOCl₂ (0.19 mL), and the reaction mixture was stirred at room temperature for 30 min under N₂. Then, the reaction mixture was evaporated under reduced pressure and directly used for the next reaction without further purification (940 mg, 1.7 mmol, 83%). ¹H NMR (CDCl₃) δ 0.88 (t, 6H, O(CH₂)₁₁CH₃), 1.21–1.39 (m, 32H, OCH₂CH₂CH₂(CH₂)₈CH₃), 1.40–1.50 (m, 4H, OCH₂CH₂CH₂), 1.76–1.86 (m, 4H, OCH₂CH₂), 3.99 (m, 4H, OCH₂), 4.55 (t, 4H, ArCH₂), 6.82 (d, *J* = 7.8 Hz, 1H, Ar-H), 6.82 (d, dd, 2H, Ar-H).

2.13. Synthesis of Compound 8_{TEG}

To a CH₂Cl₂ (10 mL) solution of a mixture of 3,4-bis(methyl triethylene glycol)benzylalcohol (1.0 g, 2.3 mmol) (*S1*) and catalytic amount of DMF at 0 °C was added dropwise SOCl₂ (0.19 mL), and the reaction mixture was stirred at room temperature for 30 min under N₂. Then, the reaction mixture was evaporated to dryness under reduced pressure and directly used for the next

reaction without further purification (1.1 g, 2.1 mmol, 91%). ¹H NMR (CDCl₃) δ 3.38 (s, 6H, OCH₃), 3.53–3.56 (m, 4H, OCH₂CH₂OCH₃), 3.63–3.69 (m, 8H, OCH₂CH₂OCH₂CH₂OCH₃), 3.71–3.77 (m, 4H, ArOCH₂CH₂OCH₂), 3.82–3.89 (m, 4H, ArOCH₂CH₂), 4.13–4.20 (m, 4H, ArOCH₂), 4.53 (s, 2H, ArCH₂), 6.87 (d, *J* = 8.3 Hz, 1H, Ar-H), 6.92 (dd, *J* = 8.3 Hz, 2.0 Hz, 1H, Ar-H), 6.97 (d, *J* = 2.0 Hz, 1H, Ar-H).

2.14. Synthesis of Compound 9_{C12}

To a DMF solution (3.4 mL) of a mixture of **7** (160 mg, 0.57 mmol) and potassium carbonate (340 mg, 2.4 mmol) was added **8**_{C12} (940 mg, 1.7 mmol), and the reaction mixture was stirred at 70 °C for 18 h under N₂. Then, the reaction mixture was filtered off from an insoluble fraction, poured into water, and extracted with toluene. The organic extract was dried over Na₂SO₄, evaporated to dryness under reduced pressure, and the residue was subjected to column chromatography on silica gel using CHCl₃/hexane (4/1 v/v) as an eluent, to allow isolation of **9**_{C12} as pale orange solid (200 mg, 0.12 mmol, 19% for two steps). ¹H NMR (CDCl₃) δ 0.88 (t, 18H, O(CH₂)₁₁CH₃), 1.20–1.39 (m, 96H, OCH₂CH₂CH₂CH₂(CH₂)₈CH₃), 1.39–1.50 (m, 12H, OCH₂CH₂CH₂CH₂), 1.65–1.85 (m, 12H, OCH₂CH₂), 3.74 (t, 2H, 4-OCH₂Ar-4-OCH₂), 3.89–3.98 (m, 10H, 4-OCH₂Ar-3-OCH₂, 3,5-OCH₂ArOCH₂), 4.72 (s, 2H, NCH₂), 4.89 (s, 2H, 4-OCH₂), 4.99 (s, 4H, 3,5-OCH₂), 6.69–6.98 (m, 11H, Ar-H), 7.72 (dd, 2H, phth-H), 7.85 (dd, 2H, phth-H).

2.15. Synthesis of Compound 9_{TEG}

To a DMF solution (2.5 mL) of a mixture of **7** (170 mg, 0.59 mmol) and potassium carbonate (370 mg, 2.7 mmol) was added **8**_{TEG} (1.1 g, 2.1 mmol) and the reaction mixture was stirred at 70 °C for 18 h under N₂. Then, the reaction mixture was filtered off from an insoluble fraction, evaporated to dryness under reduced pressure, and the residue was subjected to flash column chromatography on silica gel using CH₂Cl₂/MeOH (15/1 v/v) as an eluent, to allow isolation of **9**_{TEG} as pale yellow liquid (750 mg, 0.49 mmol, 74% for two steps). ¹H NMR (CDCl₃) δ 3.34–3.38 (m, 18H, OCH₃), 3.49–3.58 (m, 12H, OCH₂CH₂OCH₃), 3.59–3.70 (m, 24H, OCH₂CH₂OCH₂CH₂OCH₃), 3.70–3.78 (m, 12H, ArOCH₂CH₂OCH₂), 3.80–3.88 (m, 12H, ArOCH₂CH₂), 3.93 (t, 2H, 4-OCH₂Ar-4-OCH₂), 4.08–4.15 (m, 10H, 4-OCH₂Ar-3-OCH₂, 3,5-OCH₂ArOCH₂), 4.70 (s, 2H, NCH₂), 4.89 (s, 2H, 4-OCH₂), 4.99 (s, 4H, 3,5-OCH₂), 6.73–6.99 (m, 11H, Ar-H), 7.73 (dd, 2H, phth-H), 7.85 (dd, 2H, phth-H).

2.16. Synthesis of Compound 10_{C12}

To a solution of EtOH (1.0 mL) of 9_{C12} (100 mg, 0.061 mmol) was added 98% hydrazine monohydrate (0.10 mL), and the reaction mixture was refluxed for 3 h under N₂. Then, the

reaction mixture was poured into CH₂Cl₂, filtered off from an insoluble fraction and evaporated to dryness. The residue was directly used in the next reaction without further purification.

2.17. Synthesis of Compound 10_{TEG}

To a solution of EtOH (1.0 mL) of 9_{TEG} (100 mg, 0.068 mmol) was added 98% hydrazine monohydrate (0.10 mL), and the reaction mixture was refluxed for 3 h under N₂. Then, the reaction mixture was poured into CH₂Cl₂, filtered off from an insoluble fraction and evaporated to dryness. The residue was directly used in the next reaction without further purification.

2.18. Synthesis of G1-Type PDI Derivatives

To a pyridine solution (0.5 mL) of a mixture of 10_{C12} (93 mg, 0.61 mmol), 10_{TEG} (95 mg, 0.068 mmol) and imidazole (180 mg, 2.6 mmol) was added 3,4,9,10-perylenetetracarboxylic dianhydride (22 mg, 0.055 mmol) and the reaction mixture was stirred at 90 °C for 6 h under N₂. Then, the reaction mixture was evaporated to dryness under reduced pressure, and the residue

was subjected to flash column chromatography on silica gel using $CHCl_3/MeOH$ (30/1 v/v) as an eluent, where the three orange fractions were collected and evaporated to dryness under reduced After the purification with recycling preparative size-exclusion pressure, respectively. chromatography using CHCl₃ as an eluent, the first fraction was reprecipitated from CHCl₃/MeOH to allow isolation of PDI_{C12/C12 G1} (30 mg, 8.9 µmol, 16% for two steps), the second fraction was reprecipitated from CHCl₃/MeOH to allow isolation of PDI_{C12/TEG G1} (50 mg, 15 µmol, 28% for two steps), and the third fraction was reprecipitated from CHCl₃/hexane to allow isolation of PDI_{TEG/TEG G1} (33 mg, 10 µmol, 19% for two steps) as red substances. **PDI**_{C12/C12 G1}: ¹H NMR (CDCl₃) δ 8.62–8.72 (m, 8H, perylene-H), 6.68–7.02 (m, 22H, Ar-H), 5.29 (s, 4H, NCH₂), 5.02 (s, 8H, 3,5-OCH₂), 4.89 (s, 4H, 4-OCH₂), 3.87-3.95 (m, 20H, 4-OCH₂Ar-3-OCH₂, 3,5-OCH₂ArOCH₂), 3.73 (t, 4H, 4-OCH₂Ar-4-OCH₂), 1.64–1.83 (m, 24H, OCH₂CH₂), 1.19–1.48 (m, 216H, OCH₂CH₂(CH₂)₉CH₃), 0.83–0.95 (m, 36H, O(CH₂)₁₁CH₃). ¹³C NMR (CDCl₃) δ 163.4 (C=O), 152.9, 149.4, 149.3, 149.0, 138.4, 134.8, 132.6, 131.8, 130.9, 130.03, 129.6, 126.6, 123.5, 123.3, 121.1, 120.4 (PDI-C and ArC), 114.3, 113.8, 113.7, 113.6, 109.7 (ArC-2 and ArC-6), 75.1, 71.5 (ArO-CH2-Ar), 69.5, 69.3, 69.1 (ArO-CH2CH2), 44.0 (ArCH₂N), 32.1, 29.8, 29.72, 29.66, 29.5, 26.3, 26.2, 22.8 (CH₂), 14.3 (CH₃). Anal: Calcd. for C₂₂₄H₃₄₆N₂O₂₂: C, 78.69; H, 10.20; N, 0.82. Found: C, 78.49; H, 10.18; N, 0.84. MALDI-TOF MS m/z calcd for C₂₂₄H₃₄₆N₂O₂₂ [M+Na]⁺ 3439.59, found 3439.59. **PDI**_{C12/TEG G1}: ¹H NMR (CDCl₃) & 8.65–8.74 (m, 8H, perylene-H), 6.68–7.02 (m, 22H, Ar-H), 5.29 (m, 4H, NCH₂), 5.02 (m, 8H, 3,5-OCH₂), 4.89 (s, 4H, 4-OCH₂), 4.08–4.15 (m, 10H, 4-OCH₂Ar-3-OCH₂CH₂O, $3,5-OCH_2ArOCH_2CH_2O),$ 3.87-3.95 12H, 4-OCH₂Ar-4-OCH₂CH₂O, (m, 4-OCH₂Ar-3-OCH₂(CH₂)₁₀CH₃, $3,5-OCH_2ArOCH_2(CH_2)_{10}CH_3),$ 3.79-3.85 (m, 12H, ArOCH₂CH₂), 3.70–3.77 (m, 14H, ArOCH₂CH₂OCH₂, 4-OCH₂Ar-4-OCH₂(CH₂)₁₀CH₃), 3.59–3.70 (m, 24H, OCH₂CH₂OCH₂CH₂OCH₃), 3.48–3.58 (m, 12H, OCH₂CH₂OCH₃), 3.33-3.38 (m, 18H, OCH₃), 1.64-1.82 (m, 12H, OCH₂CH₂), 1.19-1.48 (m, 108H, OCH₂CH₂(CH₂)₉CH₃), 0.83–0.91 (m, 18H, O(CH₂)₁₁CH₃). ¹³C NMR (CDCl₃) δ 163.5, 163.4 (C=O), 153.0, 152.8, 149.5, 149.3, 149.2, 149.0, 148.7, 138.4, 138.2, 134.9, 132.6, 131.8, 131.6, 130.7, 130.1, 129.5, 126.6, 123.5, 121.6, 121.1, 120.9, 120.4 (PDI-C and ArC), 114.8, 114.3, 113.9, 113.7, 113.6, 109.8, 109.6 (ArC-2 and ArC-6), 75.1, 74.9, 72.1, 71.5, 71.3, 71.0, 70.94, 70.88, 70.8, 70.7, 69.9, 69.6, 69.4, 69.1, 69.0, 68.8 (ArO-CH₂ and ArO-CH₂-Ar), 59.11, 59.10

(OCH₃), 44.0, 43.9 (ArCH₂N), 32.1, 29.9, 29.8, 29.7, 29.65, 29.62, 29.54, 29.50, 26.3, 26.25, 26.22, 22.8 (CH₂), 14.2 (CH₃). Anal: Calcd. for C₁₉₄H₂₈₆N₂O₄₀: C, 70.90; H, 8.77; N, 0.85. Found: C, 70.72; H, 8.82; N, 0.90. MALDI-TOF MS m/z calcd for $C_{194}H_{286}N_2O_{40}$ [M+Na]⁺ 3307.03, found 3307.02. **PDI**_{TEG/TEG G1}: ¹H NMR (CDCl₃) δ 8.72 (s, 8H, perylene-H), 6.74–7.00 (m, 22H, Ar-H), 5.28 (s, 4H, NCH₂), 5.01 (s, 8H, 3,5-OCH₂), 4.89 (s, 4H, 4-OCH₂), 4.10 (t, 16H, 3,5-ArOCH₂), 3.92 (t, 8H, 4-ArOCH₂), 3.79–3.84 (m, 16H, 3,5-ArOCH₂CH₂), 3.69–3.78 (m, 24H, 3,5-ArOCH₂CH₂OCH₂, 4-ArOCH₂C H_2 OC H_2), 3.59-3.69 (m, 48H, OCH₂CH₂OCH₂CH₂OCH₃), 3.48–3.56 (m, 24H, OCH₂CH₂OCH₃), 3.33–3.37 (m, 36H, OCH₃). ¹³C NMR (CDCl₃) δ 163.5 (*C*=O), 152.8, 149.1, 148.9, 148.7, 138.2, 135.0, 132.7, 131.9, 131.6, 130.7, 129.6, 126.7, 123.6, 123.4, 121.5, 120.9 (PDI-C and ArC), 114.8, 114.7, 114.6, 114.2, 109.6 (ArC-2 and ArC-6), 74.9, 72.1, 71.3, 70.9, 70.8, 70.7, 69.9, 69.1, 68.9, 68.7, 59.1 (ArO-CH₂ and ArO-CH₂-Ar), 43.9 (ArCH₂N). Anal: Calcd. for C₁₆₄H₂₂₆N₂O₅₈: C, 62.46; H, 7.22; N, 0.89. Found: C, 61.87; H, 7.32; N, 0.88. MALDI-TOF MS *m/z* calcd for C₁₆₄H₂₂₆N₂O₅₈ $[M+Na]^+$ 3174.47, found 3174.47.

2.19. Synthesis of G0-Type NDI derivatives

To a pyridine solution (0.5 mL) of a mixture of 6_{C12} (86 mg, 0.13 mmol), 6_{TEG} (83 mg, 0.14 mmol) and imidazole (120 mg, 1.8 mmol) was added 1,4,5,8-naphthalenetetracarboxylic dianhydride (31 mg, 0.12 mmol) and the reaction mixture was stirred at 90 °C for 24 h under N₂. Then, the reaction mixture was evaporated to dryness under reduced pressure, and the residue was subjected to flash column chromatography on silica gel using CHCl₃/MeOH (20/1 v/v) as an eluent. Further purification of each fraction with recycling preparative size-exclusion chromatography using CHCl₃ as an eluent allowed isolations of NDI_{C12/C12 G0} (42 mg, 27 µmol, 23% for two steps) and NDI_{C12/TEG G0} (70 mg, 70 µmol, 40% for two steps) as pale yellow solid, and NDI_{TEG/TEG G0} (18 mg, 13 µmol, 11% for two steps) as pale yellow liquid. NDI_{C12/C12 G0}: ¹H

NMR (CDCl₃) 0.84-0.90 18H, $O(CH_2)_{11}CH_3),$ 1.21-1.39 96H. δ (m, (m, OCH₂CH₂CH₂(CH₂)₈CH₃), 1.39–1.49 (m, 12H, OCH₂CH₂CH₂), 1.64–1.82 (m, 12H, OCH₂CH₂), 3.88 (t, J = 6.8 Hz, 4H, 5-OCH₂), 3.96 (t, J = 6.6 Hz, 8H, 3,4-OCH₂), 5.27 (s, 4H, ArCH₂), 6.80 (s, 4H, Ar-H), 8.77 (s, 4H, naphthalene-H). 13 C NMR (CDCl₃) δ 163.0 (C=O), 153.2 (ArC-3), 138.3 (ArC-4), 131.6, 131.3, 126.9 (NDI-C and ArC-1), 108.6 (ArC-2), 73.6 (ArOCH₂-4), 69.4 (ArO-CH₂-3,5), 44.4 (ArCH₂N), 32.1, 30.5, 29.9, 29.8, 29.6, 29.5, 26.3, 22.8 (CH₂), 14.2 (CH₃). Anal: Calcd. for C₁₀₀H₁₆₂N₂O₁₀: C, 77.37; H, 10.52; N, 1.80. Found: C, 77.10; H, 10.66; N, 1.80. MALDI-TOF MS m/z calcd for C₁₀₀H₁₆₂N₂O₁₀ [M]⁻ 1551.22, found 1551.13. NDI_{C12/TEG G0}: ¹H **NMR** (CDCl₃) δ 0.83-0.91 (m, 9H, $O(CH_2)_{11}CH_3),$ 1.21-1.38 48H, (m, OCH₂CH₂CH₂(CH₂)₈CH₃), 1.38–1.49 (m, 6H, OCH₂CH₂CH₂), 1.65–1.83 (m, 6H, OCH₂CH₂), 3.35 (s, 3H, 4-OCH₃), 3.36 (s, 6H, 3,5-OCH₃), 3.49–3.55 (m, 6H, OCH₂CH₂OCH₃), 3.59–3.67 (m, 12H, $OCH_2CH_2OCH_2CH_2OCH_3),$ 3.67-3.77 (m, 8H, 3,5-ArOCH₂CH₂OCH₂, 4-ArOCH₂CH₂OCH₂), 3.82 (t, J = 5.1 Hz, 4H, 3,5-ArOCH₂CH₂), 3.88 (t, J = 6.6 Hz, 2H, 5-OCH₂), 3.96 (t, *J* = 6.3 Hz, 4H, 3,4-OCH₂), 4.08 (t, *J* = 5.2 Hz, 2H, 4-ArOCH₂), 4.14 (t, *J* = 5.0 Hz, 4H, 3,5-ArOCH₂), 5.26 (s, 2H, ArCH₂), 5.27 (s, 2H, ArCH₂), 6.80 (s, 2H, Ar-H), 6.82 (s, 2H, Ar-H), 8.77 (s, 4H, naphthalene-H). ¹³C NMR (CDCl₃) δ 162.94, 162.86 (C=O), 153.2, 152.7 (ArC-3), 138.4, 138.2 (ArC-4), 132.0, 131.6, 126.87, 126.76 (NDI-C and ArC-1), 109.4, 108.5 (ArC-2), 73.5, 72.4, 72.1, 70.9, 70.8, 70.64, 70.60, 69.8, 69.3, 69.0 (ArOCH₂-4, ArO-CH₂-3,5, and OCH₂), 59.1 (OCH₃), 44.3, 44.1 (ArCH₂N), 32.0, 30.4, 29.81, 29.76, 29.6, 29.5, 26.2, 22.8 (CH₂), 14.2 (CH₃). Anal: Calcd. for C₈₅H₁₃₂N₂O₁₉: C, 68.70; H, 8.95; N, 1.89. Found: C, 68.25; H, 8.95; N, 1.92. MALDI-TOF MS m/z calcd for C₈₅H₁₃₂N₂O₁₉ [M]⁻ 1484.94, found 1484.85. **NDI**_{TEG/TEG G0}: ¹H NMR (CDCl₃) δ 3.35 (s, 6H, 4-OCH₃), 3.36 (s, 12H, 3,5-OCH₃), 3.49–3.55 (m, 12H, OCH₂CH₂OCH₃), 3.59–3.67 (m, 24H, OCH₂CH₂OCH₂CH₂OCH₃), 3.68–3.77 (m, 12H, 3,5-ArOCH₂CH₂OCH₂, 4-ArOCH₂CH₂OCH₂), 3.82 (t, J = 4.9 Hz, 8H, 3,5-ArOCH₂CH₂), 4.08 (t, J = 5.1 Hz, 4H, 4-ArOCH₂), 4.14 (t, J = 5.1 Hz, 8H, 3,5-ArOCH₂), 5.26 (s, 4H, ArCH₂), 6.82 (s, 4H, Ar-H), 8.77 (s, 4H, naphthalene-H). ¹³C NMR (CDCl₃) δ 162.9 (C=O), 152.6 (ArC-3), 138.4 (ArC-4), 132.0, 131.3 (NDI-C), 126.9 (ArC-1), 126.8 (NDI-C), 109.4 (ArC-2), 72.4, 72.1, 70.9, 70.8, 70.65, 70.60, 69.8, 69.0 (ArOCH₂-4, ArO-CH₂-3,5, and OCH₂), 59.11, 59.08 (OCH₃), 44.1 (ArCH₂N). Anal: Calcd. for C₇₀H₁₀₂N₂O₂₈: C, 59.23; H, 7.24; N, 1.97. Found: C, 59.06; H, 7.26; N, 2.04. MALDI-TOF MS m/z calcd for C₇₀H₁₀₂N₂O₂₈ [M]⁻ 1418.66, found 1418.59.

Supporting Figures

2.20. Differential Scanning Calorimetry

Fig. S1 Differential scanning calorimetry traces of (a) $PDI_{C12/C12 G0}$, (b) $PDI_{C12/TEG G0}$, (c) $PDI_{TEG/TEG G0}$, (d) $PDI_{C12/C12 G1}$, (e) $PDI_{C12/TEG G1}$, (f) $PDI_{TEG/TEG G1}$, (g) $NDI_{C12/C12 G0}$, (h) $NDI_{C12/TEG G0}$, and (i) $NDI_{TEG/TEG G0}$ on second heating/cooling processes at a rate of 10 °C min⁻¹.

Table S1 Calculated entropy (ΔS) and enthalpy (ΔH) values for (a) LC–Isotropic and (b) Solid–LC phase transitions. ΔH was evaluated from the averaged values of endothermic/exothermic peaks on heating/cooling in differential scanning calorimetry. ΔS was calculated from equation $\Delta S = \Delta H/T$, where *T* represents phase transition temperatures averaged on the heating and cooling processes.

_		•
	~	•
	-	
•		

(b)

Entry	ΔH / kJ mol ⁻¹	ΔS / J mol ⁻¹	<i>T </i> K	Entry	∆ <i>H</i> / kJ mol ^{_1}	∆S / J mol ^{_1}	T/K
PDI _{C12/C12 G0}	13	26.3	494	PDI _{C12/C12 G0}	17.2	70.3	245
PDI _{C12/TEG G0}	7.7	16.5	467	PDI _{C12/TEG G0}	23.2	78.9	294
PDI _{TEG/TEG G0}	5.5	12.4	444	PDI _{TEG/TEG G0}	2.1	6.5	323
PDI _{C12/C12 G1}	2.7	5.9	462	PDI _{C12/C12 G1}	59.8	219	273
PDI _{C12/TEG G1}	1.7	4.0	425	PDI _{C12/TEG G1}	22.2	78.9	266
PDI _{TEG/TEG G1}	^{a)} 13.3	36.2	367	PDI _{TEG/TEG G1} a)	13.3	36.2	367
NDI _{C12/C12 G0}	27.1	66.1	410	NDI_{C12/C12 G0}	61.4	183	336
NDI _{C12/TEG G0}	19	52.7	361	NDI _{C12/TEG G0}	8.6	27.7	310
NDI _{TEG/TEG G0}	b)	-	-	NDI _{TEG/TEG G0} b) _	_	_

^{a)} Cr–Iso transition. ^b No phase transition.

Fig. S2 Entropy (ΔS)-enthalpy (ΔH) plots for (a) LC–Isotropic and (b) Solid–LC phase transitions.

2.21. Variable Temperature X-ray Diffraction Analysis

Fig. S3 X-ray diffraction patterns of **PDI**_{C12/C12 G0} at (a) -80 °C, (b) -40 °C, (c) 20 °C, (d) 70 °C, (e) 120 °C, (f) 180 °C, (g) 210 °C, and (h) 260 °C. The sample was cooled from its isotropic melt at a rate of 20 °C min⁻¹.

Fig. S4 X-ray diffraction patterns of **PDI**_{C12/TEG G0} (a) –40 °C, (b) –20 °C, (c) 50 °C, (d) 90 °C, (e) 130 °C, (f) 170 °C, (g) 200 °C, and (h) 220 °C. The sample was cooled from its isotropic melt at a rate of 20 °C min⁻¹.

Fig. S5 X-ray diffraction patterns of $PDI_{TEG/TEG G0}$ at (a) -80 °C, (b) -50 °C, (c) -20 °C, (d) 20 °C, (e) 80 °C, (f) 120 °C, (g) 180 °C, and (h) 220 °C. The sample was cooled from its isotropic melt at a rate of 20 °C min⁻¹.

Fig. S6 X-ray diffraction patterns of **PDI**_{C12/C12 G1} at (a) -30 °C, (b) 10 °C, (c) 50 °C, (d) 90 °C, (e) 110 °C, (f) 140 °C, (g) 170 °C, and (h) 200 °C. The sample was cooled from its isotropic melt at a rate of 10 °C min⁻¹.

Fig. S7 X-ray diffraction patterns of **PDI**_{C12/TEG G1} at (a) $-50 \,^{\circ}$ C, (b) $-20 \,^{\circ}$ C, (c) $10 \,^{\circ}$ C, (d) $40 \,^{\circ}$ C, (e) 70 $\,^{\circ}$ C, (f) 100 $\,^{\circ}$ C, (g) 130 $\,^{\circ}$ C, (h) 149 $\,^{\circ}$ C, and (i) 188 $\,^{\circ}$ C. The sample was cooled from its isotropic melt at a rate of 10 $\,^{\circ}$ C min⁻¹. Col_x phase are basically composed of Col_r structure with *p2mg* symmetry.

Fig. S8 X-ray diffraction patterns of **PDI**_{TEG/TEG G1} at (a) -50 °C, (b) -30 °C, (c) 0 °C, (d) 30 °C, (e) 60 °C, (f) 90 °C, and (g) 120 °C. The sample was cooled from its isotropic melt at a rate of 1 °C min⁻¹.

Fig. S9 X-ray diffraction patterns of $NDI_{C12/C12 G0}$ at (a) -60 °C, (b) -30 °C, (c) 0 °C, (d) 30 °C, (e) 60 °C, (f) 90 °C, (g) 120 °C, (h) 150 °C, and (i) 180 °C. The sample was cooled from its isotropic melt at a rate of 10 °C min⁻¹.

Fig. S10 X-ray diffraction patterns of $NDI_{C12/TEG G0}$ at (a) -60 °C, (b) -30 °C, (c) 0 °C, (d) 30 °C, (e) 60 °C, (f) 90 °C, and (g) 120 °C. The sample was cooled from its isotropic melt at a rate of 10 °C min⁻¹.

Fig. S11 X-ray diffraction patterns of $NDI_{TEG/TEG G0}$ at (a) -60 °C, (b) -30 °C, (c) 0 °C, (d) 30 °C, (e) 60 °C, and (f) 90 °C. The sample was cooled from its isotropic melt at a rate of 10 °C min⁻¹.

Table S2 Observed *d* spacing values in X-ray diffraction patterns and their *hkl* assignment for $PDI_{C12/C12 G0}$ as a function of temperature.

Temperature / °C	d _{obs} / Å (<i>hkl</i>)
–80 (G)	27.02 (100), 15.71 (110), 13.72 (200), 4.29 (halo), 3.38 (001)
–40 (G)	27.19 (100), 15.70 (110), 13.66 (200), 4.34 (halo), 3.38 (001)
20 (Col _h a = 30.8)	26.67 (100), 15.36 (110), 13.31 (200), 4.43 (halo), 3.36 (001)
70 (Col _h a = 30.9)	26.79 (100), 15.47 (110), 13.37 (200), 10.13 (210), 4.50 (halo), 3.38 (001)
120 (Col _h a = 31.5)	27.26 (100), 15.67 (110), 13.57 (200), 10.25 (210), 4.53 (halo), 3.40 (001)
180 (Col _h a = 31.9)	27.63 (100), 15.91 (110), 13.75 (200), 10.40 (210), 4.65 (halo), 3.43 (001)
210 (Col _h a = 32.2)	27.88 (100), 16.03 (110), 13.90 (200), 10.49 (210), 4.74 (halo), 3.46 (001)

Table S3 Observed *d* spacing values in X-ray diffraction patterns and their *hkl* assignment for $PDI_{C12/TEG G0}$ as a function of temperature.

Temperature / °C	d _{obs} / Å (<i>hkl</i>)
-40 (Cr)	54.28, 27.14, 26.11, 23.44, 21.79, 19.04, 18.04, 17.33, 14.52, 14.06, 10.80, 10.39, 9.69, 9.03, 8.58, 6.96, 5.64, 4.33 (halo), 3.51, 3.35
-20 (Cr)	54.76, 27.26, 26.22, 23.53, 21.94, 18.98, 18.15, 17.48, 14.53, 13.97, 10.86, 10.49, 9.70, 8.59, 5.70, 4.33 (halo), 3.51, 3.35
50 (Col _r a = 54.3, b = 25.6)	54.28 (100), 26.79 (200), 23.18 (110), 18.47 (210), 17.89 (300), 14.60, 14.03 (310), 13.14, 12.76, 11.27, 10.71, 10.38, 9.78, 9.23, 8.17, 7.25, 6.73, 4.56 (halo), 3.49 (001)
90 (Col _r a = 53.3, b = 26.1)	53.34 (100), 26.44 (200), 23.44 (110), 18.58 (210), 17.68 (300), 14.63 (310), 14.10, 13.00 (020), 11.72 (220), 11.28, 10.47 (320), 9.78, 9.28 (420), 8.22 (230), 4.57 (halo), 3.5 (001)
130 (Col _r a = 51.6, b = 29.6)	51.56 (100), 25.67 (200, 110), 19.22 (210), 17.14 (300), 14.70 (310), 12.82 (400), 12.48, 9.64, 4.42 (halo), 3.45 (001)
170 (Col _h <i>a</i> = 29.9)	25.89 (100), 14.88 (110), 12.87 (200), 9.73 (210), 4.49 (halo), 3.47 (001)
200 (Col _h <i>a</i> = 30.1)	26.11 (100), 15.05 (110), 13.03 (200), 4.59 (halo), 3.50 (001)

Table S4 Observed d spacing values in X-ray diffraction patterns and their hkl assignment for**PDI**_{TEG/TEG G0} as a function of temperature.

Temperature / °C	d _{obs} / Å (hkl)
-80 (Cr)	22.8, 22.0, 19.5, 14.1, 12.4, 11.4, 7.6, 3.9 (halo), 3.4 (001)
-50 (Cr)	23.0, 22.1, 19.5, 14.1, 12.5, 11.4, 7.6, 3.9 (halo), 3.4 (001)
-20 (Cr)	23.2, 22.3, 19.6, 14.1, 12.6, 11.5, 8.7, 8.3, 7.7, 6.3, 5.8, 3.9 (halo), 3.4 (001)
20 (Cr)	23.4, 22.3, 19.8, 14.0, 12.7, 11.6, 11.3, 8.8, 8.4, 7.8, 4.0 (halo), 3.4 (001)
80 (Col _h a = 26.5)	22.9 (100), 13.2 (110), 11.4 (200), 8.7 (210), 4.6 (halo), 3.5 (001)
120 (Col _h a = 27.6)	23.9 (100), 13.8 (110), 11.9 (200), 9.2 (210), 4.3 (halo), 3.5 (001)
180 (Col _h a = 27.6)	23.9 (100), 13.8 (110), 11.9 (200), 4.1 (halo), 3.5 (001)

Table S5 Observed *d* spacing values in X-ray diffraction patterns and their *hkl* assignment for $PDI_{C12/C12 G1}$ as a function of temperature.

Temperature / °C	d _{obs} / Å (<i>hkl</i>)
–30 (G)	38.0 (100), 24.0, 14.0 (210), 12.8 (300), 4.2 (halo), 3.4 (001)
10 (G)	38.2 (100), 24.0, 14.3 (210), 12.9 (300), 4.3 (halo), 3.4 (001)
50 (Col _h a = 44.1)	38.4 (100), 21.6 (110), 14.4 (210), 12.7 (300), 4.4 (halo), 3.4 (001)
90 (Col _h a = 44.4)	38.4 (100), 21.6 (110), 14.5 (210), 13.0 (300), 4.5 (halo), 3.4 (001)
110 (Cub a = 53.4)	37.7 (110), 26.7 (200), 21.7 (211), 18.9 (220), 4.5 (halo)
140 (Cub a = 52.4)	37.1 (110), 26.2 (200), 21.4 (211), 18.5 (220), 4.6 (halo)
170 (Cub a = 50.9)	36.0 (110), 25.5 (200), 20.8 (211), 18.0 (220), 4.6 (halo)

Table S6 Observed *d* spacing values in X-ray diffraction patterns and their *hkl* assignment for $PDI_{C12/TEG G1}$ as a function of temperature.

Temperature / °C	d _{obs} / Å (<i>hkl</i>)
-50 (G)	76.4 (100), 57.8, 44.5, 37.5 (200), 34.0 (110), 27.0 (210), 21.7 (310), 19.7 (400), 15.5 (500), 4.2 (halo), 3.4 (001)
-20 (G)	77.4 (100), 57.8, 45.2, 37.7 (200), 34.2 (110), 27.4 (210), 21.7 (310), 19.8 (400), 15.7 (500), 4.2 (halo), 3.4 (001)
10 (Col _x)	76.4 (100), 58.9, 45.2, 38.0 (200), 34.6 (110), 27.8 (210), 21.7 (310), 19.7 (400), 16.0 (320), 4.2 (halo), 3.4 (001)
40 (Col _x)	77.4 (100), 59.5, 45.8, 38.2 (200), 35.2 (110), 28.4 (210), 27.4, 22.2 (310), 19.3 (400), 16.5 (320), 14.6 (510), 13.5 (230), 12.0, 10.8 (140 or 040), 4.3 (halo), 3.4 (001)
70 (Col _x)	77.4 (100), 58.9, 45.8, 38.4 (200), 35.2 (110), 28.7 (210), 27.6, 23.3 (310), 21.2 (120), 19.2 (220), 17.1 (320), 14.8 (510), 14.2 (420), 13.7 (230), 12.0, 10.8 (140 or 240), 4.3 (halo), 3.5 (001)
100 (Col _x)	78.3 (100), 59.5, 46.2, 38.7 (200), 35.4 (110), 28.9 (210), 27.5, 22.3 (310), 21.0 (120), 20.1 (400), 19.2 (220), 17.6 (320), 15.1 (510), 14.2 (130), 13.8 (230), 13.1 (600), 12.1, 12.1, 4.4 (halo), 3.4 (001)
130 (Col _x)	78.3 (100), 58.4, 46.5, 38.9 (200), 35.2 (110), 28.1 (210), 25.8 (300), 21.7 (310), 20.3 (020), 19.3 (120, 400), 17.8 (220), 15.7 (320), 15.1, 14.4 (510), 13.8 (420), 12.9 (130), 12.2 (230), 11.7 (330), 4.4 (halo), 3.5 (001)
149 (Col _r a = 79.3, b = 38.9)	79.3 (100), 38.9 (200), 35.0 (110), 26.1 (300), 19.3 (020), 17.4 (220), 14.4 (510), 13.7 (420), 12.8 (130), 12.2 (230), 4.4 (halo)

Table S7 Observed d spacing values in X-ray diffraction patterns and their hkl assignment for**PDI**_{TEG/TEG G1} as a function of temperature.

Temperature / °C	d _{obs} / Å (<i>hkl</i>)
–50 (Cr)	66.5, 52.9, 41.0, 38.2, 33.5, 28.0, 20.6, 19.3, 16.8, 13.5, 12.6, 4.0 (halo), 3.7, 3.4
-30 (Cr)	67.3, 53.8, 41.5, 38.9, 33.8, 28.4, 20.8, 19.5, 16.9, 13.6, 12.7, 4.1 (halo), 3.7, 3.4
0 (Cr)	67.3, 53.8, 41.5, 39.2, 34.0, 28.7, 25.2, 23.4, 20.9, 19.7, 17.1, 13.7, 12.8, 4.1 (halo), 3.7, 3.4
30 (Cr)	68.0, 54.8, 41.8, 39.2, 34.2, 29.1, 25.1, 23.5, 21.2, 19.2, 14.0, 13.5, 12.7, 4.1 (halo), 3.7, 3.5
60 (Cr)	68.8, 55.3, 42.1, 39.2, 34.4, 32.9, 29.6, 28.3, 25.2, 23.7, 21.5, 20.8, 19.4, 14.3, 13.4, 4.2 (halo), 3.7, 3.5
90 (Cr)	68.8, 55.8, 42.1, 38.7, 34.4, 32.9, 30.0, 28.1, 25.3, 23.6, 21.5, 19.4, 18.9, 18.0, 14.0, 13.4, 4.1 (halo), 3.8, 3.5

Table S8 Observed *d* spacing values in X-ray diffraction patterns and their *hkl* assignment for $NDI_{C12/C12 G0}$ as a function of temperature.

Temperature / °C	d _{obs} / Å (<i>hkl</i>)
-60 (Cr)	27.1, 19.1, 13.5, 12.1, 9.5, 9.0, 8.5, 7.5, 6.7, 6.5, many minor peaks
-30 (Cr)	27.1, 19.2, 13.5, 12.1, 9.6, 9.0, 8.5, 7.5, 6.8, 6.6, many minor peaks
0 (Cr)	27.3 (100), 19.2 (110), 13.5 (200, 020), 12.1 (120, 210), 9.6 (220), 9.0 (300, 030), 8.6 (130, 310), 7.6 (230, 320), 6.8 (400, 040), 6.6 (140, 410), many minor peaks
30 (Cr)	27.5 (100), 19.3 (110), 13.6 (200, 020), 12.2 (120, 210), 9.6 (220), 9.1 (300, 030), 8.6 (130, 310), 7.6 (230, 320), 6.8 (400, 040), 6.6 (140, 410), many minor peaks
60 (Cr)	27.5, 19.4, 13.7 (200, 020), 12.2 (120, 210), 9.7 (220), 9.1 (300, 030), 8.7 (130, 310), 7.6 (230, 320), 6.8 (400, 040), 6.6 (140, 410), many minor peaks
90 (Col _r a = 45.2, b = 34.4)	27.4 (110), 22.6 (200), 17.3 (020), 13.67 (220), 9.4 (420), 9.1 (330), 8.7 (040), 7.1 (530), 6.8 (440), 6.3 (350), 5.7 (800), 4.6 (halo), 3.5 (001)
120 (Col _r a = 45.2, b = 34.4)	26.9 (110), 24.8 (200), 16.0 (020), 14.6 (310), 13.4 (220), 10.4 (130), 9.8 (420), 8.9 (330), 8.2 (600), 8.0 (040), 7.2 (530), 6.7 (440), 5.9 (910), 5.7, 4.8 (halo), 3.5 (001)
150 (Col _r a = 45.2, b = 34.4)	26.8 (110), 25.4 (200), 15.8 (020), 14.9 (310), 13.4 (220), 9.9 (420), 8.9 (330), 8.4 (600), 7.9 (040), 7.3 (530), 6.7 (440), 4.8 (halo), 3.5 (001)

Table S9 Observed *d* spacing values in X-ray diffraction patterns and their *hkl* assignment for $NDI_{C12/TEG G0}$ as a function of temperature.

Temperature / °C	d _{obs} / Å (<i>hkl</i>)
-60 (Cr)	49.9 (100), 39.4, 30.6, 24.9 (200), 20.8 (110), 16.6, 12.8 (400), 9.9 (220), 9.1 (510), 8.5 (420), 7.2 (130), 6.4, 4.4 (halo), 3.4 (001)
-30 (Cr)	50.7 (100), 39.9, 30.8, 25.1 (200), 21.0 (110), 16.7, 13.0 (400), 10.0 (220), 8.8 (420), 8.6 (420), 6.8 (620), 6.5 (330 or 800), 4.1 (halo), 3.4 (001)
0 (Cr)	50.7 (100), 39.9, 31.6, 25.2 (200), 21.0 (110), 16.7, 13.0 (310), 12.5 (400), 10.0 (220), 8.8 (420 or 600), 8.6 (600 or 420), 7.4 (130), 6.4 (800 or 330), 4.4 (halo), 3.4 (001)
30 (Cr)	50.7 (100), 38.9, 31.6, 25.3 (200), 21.0 (110), 16.7, 13.0 (310), 12.6 (400), 11.5 (020), 10.1 (220), 8.6 (420), 6.9 (710), 6.5 (800), 4.4 (halo), 3.4 (001)
60 (Cr)	50.7 (100), 40.4, 30.6, 25.2 (200), 22.0 (110), 13.2 (310), 12.5 (400), 8.7 (420), 8.3 (600), 7.6 (330), 6.8 (710), 6.5 (530), 4.4 (halo), 3.5 (001)
90 (Col _r a = 48.5, b = 28.0)	49.5 (100), 28.4 (110), 24.4 (200), 18.4 (020), 16.4 (120), 14.1 (220), 13.9, 12.3 (400), 10.7 (230), 10.5 (230), 9.7 (510), 9.2 (330), 8.7 (040), 8.0 (240), 7.7, 7.4, 7.0, 4.7 (halo), 3.5 (001)

Table S10 Observed d spacing values in X-ray diffraction patterns and their hkl assignment for**NDI**TEG/TEG G0 as a function of temperature.

Temperature / °C	d _{obs} / Å (<i>hkl</i>)
-60 (Iso)	22, 3.8 (halo) (Very weak)
-30 (Iso)	22, 3.9 (halo) (Very weak)
0 (Iso)	22, 4.0 (halo) (Very weak)
30 (Iso)	22, 4.0 (halo) (Very weak)
60 (Iso)	22, 4.1 (halo) (Very weak)
90 (Iso)	22, 4.1 (halo) (Very weak)

Polarized Optical Microscopy

Figure S12. Crossed polarized optical micrographs of (a) **PDI**_{C12/TEG G0} at 40 °C, (b) **PDI**_{TEG/TEG G0} at 35 °C, (c) **PDI**_{C12/C12 G1} at 25 °C, (d) **PDI**_{C12/TEG G1} at 25 °C, (e) **NDI**_{C12/C12 G0} at 25 °C, and (f) **NDI**_{C12/TEG G0} at 25 °C. Scale bars indicate 200 μm.

3. Supporting References

(S1) S. Zhang, H.-J. Sun, A. D. Hughes, B. Draghici, J. Lejnieks, P. Leowanawat, A. Bertin, L. O. D. Leon, O. V. Kulikov, Y. Chen, D. J. Pochan, P. A. Heiney, V. Percec, ACS Nano, 2014, 8, 1554–1565.