Supporting Information

Effects of pyridyl group orientations on the optoelectronic properties of regio-isomeric diketopyrrolopyrrole based π conjugated polymers

Jing Yue, Sheng Sun, Junfei Liang, Wenkai Zhong, Linfeng Lan, Lei Ying*, Fei Huang*, Wei Yang, Yong Cao

State Key Laboratory of Luminescent Materials and Devices, and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510640, China

*Corresponding authors

Prof. Lei Ying (L. Ying) Email: msleiying@scut.edu.cn Tel : +86-20-87114346-17 Fax: +86-20-87110606

Prof. Fei Huang (F. Huang) Email: msfhuang@scut.edu.cn Tel : +86-20-87114346-17 Fax: +86-20-87110606

	<i>M</i> n ^{<i>a</i>} (kDa)	Mw ^a (kDa)	PDI	Yield (%)	<i>T</i> _d ^b (°C)
d-PDBPy	37.7	94.1	2.5	82	413
p-PDBPy	21.4	67.5	3.1	69	394

Table S1. Molecular weight and thermal properties of the copolymers.

^{*a*} Determined by GPC in tetrahydrofuran (THF) using polystyrene standards.

^b The 5% weight-loss temperatures under a nitrogen atmosphere.

Fig. S1 (a) TGA curves of copolymers at a heating rate of 20 °C min⁻¹ under a nitrogen

atmosphere; (b) DSC characteristics of polymers at a scanning rate 10 °C min⁻¹.

Fig. S2 Output and transfer characteristics of (a and b) *d*-PDBPy and (c and d) *p*-PDBPy devices (spin-coated from CF solutions) at V_{SD} =-30 V (*L*=70 μ m, *W*=500 μ m) after thermal annealing at 100 for 10 min.

Fig. S3 The 500 MHz ¹H NMR spectrum of compound 1.

Fig. S4 The 126 MHz 13 C NMR spectrum of compound 1.

Fig. S5 The 500 MHz ¹H NMR spectrum of monomer 2.

Fig. S6 The 126 MHz ¹³C NMR spectrum of monomer 2.

Fig. S7 The 500 MHz ¹H NMR spectrum of monomer 4.

Fig. S8 The 126 MHz ¹³C NMR spectrum of monomer 4.

Fig. S9 The 500 MHz ¹H NMR spectrum of compound 5.

Fig. S10 The 126 MHz ¹³C NMR spectrum of compound 5.

Fig. S11 The 500 MHz ¹H NMR spectrum of compound 7.

Fig. S12 The 126 MHz ¹³C NMR spectrum of compound 7.

Fig. S13 The 500 MHz ¹H NMR spectrum of monomer 8.

Fig. S14 The 126 MHz ¹³C NMR spectrum of monomer 8.