Supplementary Information for:

New Family of Room Temperature Quantum Spin Hall Insulators in Two-Dimensional Germanene films

Run-wu Zhang,^a Chang-wen Zhang*,^a Wei-xiao Ji,^a Sheng-shi Li,^b Ping Li,^a and Pei-ji Wang ^a

^aSchool of Physics and Technology, University of Jinan, Jinan, Shandong, 250022, People's Republic of China

^bSchool of Physics, State Key laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, People's Republic of China

* Correspondence and requests for materials should be addressed to: zhchwsd@163.com

Fig. S1. Orbital-resolved band structures with SOC of (a) GeC₂F and (b) GeC₂Cl under the value of strain $\varepsilon = 0.0\%$, 2.0%, 4.0% respectively. (c) GeC₂Br presents orbital-resolved band structures with SOC under the value of strain $\varepsilon = -4.0\%$, -2.0%, 0.0% respectively. The red dots represent the contributions from the *s* atomic orbital of Ge atom and the blue dots represent contributions from the p_x and p_y atomic orbitals of Ge atom.

Fig. S2 The calculated energy gaps at Γ point (E_{Γ}) and the global energy gap (E_g) of GeC₂F (a), GeC₂Cl (b) and GeC₂Br (c) with SOC as a function of external strain by GGA method. The energy gaps at Γ point (E_{Γ}) and the global energy gap (E_g) of GeC₂F (d), GeC₂Cl (e) and GeC₂Br (f) with SOC as a function of external strain by HSE method. Insets in panel show the trend of band gaps of TI phase as a function of external strain.

Fig. S3 Total (left panel) and spin (right panel) edge density of states for (a) GeC_2F , (b) GeC_2Cl and (c) GeC_2Br . In the spin edge plot, red/blue lines denote the spin up/down polarization.

Fig. S4 Calculated electronic band structures of the zigzag-type nanoribbons of (a) GeC_2F ($\epsilon = 8.0$ %); (b) GeC_2Cl ($\epsilon = 8.0$ %); and (d) GeC_2Br ($\epsilon = 0$ %) with SOC.

Fig. S5 The orbital-resolved band structures with SOC for (a) $GeC_2F@BN$, (b) $GeC_2Cl@BN$ and (c) $GeC_2I@BN$, respectively.