Supplementary Information for:

New Family of Room Temperature Quantum Spin Hall Insulators in Two-Dimensional Germanene films

Run-wu Zhang, ${ }^{\text {a }}$ Chang-wen Zhang*, ${ }^{\text {a }}$ Wei-xiao Ji, ${ }^{\text {a }}$ Sheng-shi Li, ${ }^{\text {b }}$ Ping Li, ${ }^{\text {a }}$ and Pei-ji Wang ${ }^{\text {a }}$
${ }^{\text {a }}$ School of Physics and Technology, University of Jinan, Jinan, Shandong, 250022, People's Republic of China
${ }^{\mathrm{b}}$ School of Physics, State Key laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, People's Republic of China

[^0]

Fig. S1. Orbital-resolved band structures with SOC of (a) $\mathrm{GeC}_{2} \mathrm{~F}$ and (b) $\mathrm{GeC}_{2} \mathrm{Cl}$ under the value of strain $\varepsilon=0.0 \%, 2.0 \%, 4.0 \%$ respectively. (c) $\mathrm{GeC}_{2} \mathrm{Br}$ presents orbital-resolved band structures with SOC under the value of strain $\varepsilon=-4.0 \%,-2.0 \%$, 0.0% respectively. The red dots represent the contributions from the s atomic orbital of Ge atom and the blue dots represent contributions from the p_{x} and p_{y} atomic orbitals of Ge atom.

Fig. S2 The calculated energy gaps at Γ point $\left(E_{\Gamma}\right)$ and the global energy gap $\left(E_{\mathrm{g}}\right)$ of $\mathrm{GeC}_{2} \mathrm{~F}$ (a), $\mathrm{GeC}_{2} \mathrm{Cl}$ (b) and $\mathrm{GeC}_{2} \mathrm{Br}$ (c) with SOC as a function of external strain by GGA method. The energy gaps at Γ point $\left(E_{\Gamma}\right)$ and the global energy gap $\left(E_{\mathrm{g}}\right)$ of $\mathrm{GeC}_{2} \mathrm{~F}(\mathrm{~d}), \mathrm{GeC}_{2} \mathrm{Cl}$ (e) and $\mathrm{GeC}_{2} \mathrm{Br}$ (f) with SOC as a function of external strain by HSE method. Insets in panel show the trend of band gaps of TI phase as a function of external strain.

Fig. S3 Total (left panel) and spin (right panel) edge density of states for (a) $\mathrm{GeC}_{2} \mathrm{~F}$, (b) $\mathrm{GeC}_{2} \mathrm{Cl}$ and (c) $\mathrm{GeC}_{2} \mathrm{Br}$. In the spin edge plot, red/blue lines denote the spin up/down polarization.

Fig. S4 Calculated electronic band structures of the zigzag-type nanoribbons of (a) $\mathrm{GeC}_{2} \mathrm{~F}(\varepsilon=8.0 \%) ;(\mathrm{b}) \mathrm{GeC}_{2} \mathrm{Cl}(\varepsilon=8.0 \%)$; and (d) $\mathrm{GeC}_{2} \mathrm{Br}(\varepsilon=0 \%)$ with SOC.

Fig. S5 The orbital-resolved band structures with SOC for (a) $\mathrm{GeC}_{2} \mathrm{~F} @ \mathrm{BN}$, (b) $\mathrm{GeC}_{2} \mathrm{Cl} @ \mathrm{BN}$ and (c) $\mathrm{GeC}_{2} \mathrm{I} @ \mathrm{BN}$, respectively.

[^0]: * Correspondence and requests for materials should be addressed to: zhchwsd@163.com

