Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2016

Supporting Information for

Highly sensitive, tunable, and durable gold nanosheet strain sensors for human motion detection

Guh-Hwan Lim, Nae-Eung Lee, and Byungkwon Lim*

School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 440-746, Korea *E-mail: blim@skku.edu

Fig. S1 (a) Scanning electron microscopy (SEM) image of Au nanosheets. (b) Atomic force microscopy (AFM) image of a single Au nanosheet, showing its thickness of about 20 nm.

Fig. S2 Gauge factors of Au nanosheet strain sensors based on bilayer (black line) and eightlayer (red line) Au nanosheet films according to tensile strain.

Fig. S3 OM image of Ag nanowire film on Ecoflex substrate taken after 10,000 cycles of stretching at $\varepsilon = 0.5$, showing the generation of cracks in the film.

Fig. S4 OM image of eight-layer Au nanosheet film on Ecoflex substrate taken after 10,000 cycles of stretching at $\varepsilon = 0.5$.

Fig. S5 OM images showing the reversible sliding of Au nanosheets during a stretching and releasing cycle.

Fig. S6 Hysteresis curves of the eight-layer Au nanosheet film measured at different strains.

Fig. S7 Time-dependent $\Delta R/R_0$ of the sensor based on bilayer Au nanosheet film in response to repetitive stretching at strains from 8 to 0% with decrement of 2% (10 cycles per strain).

Fig. S8 $\Delta R/R_0$ response of the sensor shown in Fig. 4d measured after 1,500 steps of walking.