Supporting information

Efficient polymer solar cells based on a new quinoxaline derivative with fluorinated phenyl side chain

Qunping Fan ^a, Huanxiang Jiang ^b, Yu Liu ^{a,c*}, Wenyan Su ^a, Hua Tan ^a,

Yafei Wang a, Renqiang Yang b,*, Weiguo Zhu a,c*

^a College of Chemistry, Xiangtan University, Key Lab of Environment-Friendly

Chemistry and Application in Ministry of Education, Xiangtan 411105, China

^b Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China

^c School of Materials of Science and Engineering, Changzhou University, Changzhou,

213164, China

*Corresponding author: Prof. Yu Liu; Renqiang Yang; Weiguo Zhu

Tel: +86-731-58293377 Fax: +86-731-58292251

E-mail addresses: liuyu03b@126.com; yangrq@qibebt.ac.cn; zhuwg18@126.com; yangrq@qibebt.ac.cn; zhuwg18@126.com; yangrq@qibebt.ac.cn; zhuwg18@126.com; yangrq@qibebt.ac.cn; zhuwg18@126.com; yhuwg18@126.com; yangrq@qibebt.ac.cn; zhuwg18@126.com; yangrq@qibebt.ac.cn; zhuwg18@126.com; yangrq@qibebt.ac.cn; yangrq@qibebt.ac.cn; zhuwg18@126.com; pailto:yhuwg18@126.com; yangrq@qibebt.ac.cn; pailto:yhuwg18@126.com; mailto:yangrq@qibebt.ac.cn; pailto:zhuwg18@126.com; pailto:yhuwg18@126.com; pailto:yhuwg18@126.com; pailto:yhuwg18@126.com; pailto:yhuwg18@126.com; hitto:yhuwg18@126.com; hitto:yhuwg18@126.com</

1. TGA measurement

Fig. S1 TGA curve of PBDTT-DTFPQx at a scan rate of 20 °C/min under nitrogen

atmosphere.

2. DSC measurement

Fig. S2 DSC curves of polymers with a heating rate of 10 $^{\circ}$ C min⁻¹ under N₂

atmosphere.

3. DFT calculation

Fig. S3 The calculated HOMO and LUMO levels of non fluorinated PBDTDT(Qx-3)-

T and fluorinated PBDTT-DTFPQx by Gaussian at the B3LYP/6-31G* level.

4. Photovoltaic properties of polymer-based PSCs at different conditions

Fig. S4 *J-V* curves of the PBDTT-DTFPQx/PC₇₁BM-based PSCs with different blend ratios (*w/w*) under illumination of AM 1.5G, 100 mW/cm².

Table S1 Photovoltaic properties of the PBDTT-DTFPQx/PC71BM-based PSCs with

D/A Ratio	$J_{\rm sc}$ / mA cm ⁻²	$V_{\rm oc}/{ m V}$	FF/ %	PCE _{max} (PCE _{ave} ^a)/ %
1/3	8.2	0.79	70	4.5 (4.3)
1/4	10.1	0.87	65	5.8 (5.6)
1/5	7.5	0.81	68	4.2 (4.1)

different blend ratios (w/w) under illumination of AM 1.5G, 100 mW/cm².

^{a)} The average PCE was obtained from over 10 devices.

Fig. S5 *J-V* curves of the PBDTT-DTFPQx/PC₇₁BM-based PSCs with different

temperature under illumination of AM 1.5G, 100 mW/cm².

Table S2 Photovoltaic properties of the PBDTT-DTFPQx/PC71BM-based PSCs with

Temperature/ °C	$J_{\rm sc}/~{ m mA~cm^{-2}}$	$V_{\rm oc}/~{ m V}$	FF/ %	PCE _{max} (PCE _{ave} ^a)/ %
25	10.1	0.87	65	5.8 (5.6)
80	11.3	0.86	71	6.9 (6.6)
110	10.4	0.89	65	6.0 (5.8)

different temperature under illumination of AM 1.5G, 100 mW/cm².

^{a)} The average PCE was obtained from over 10 devices.

Fig. S6 *J-V* curves of the PBDTT-DTFPQx/PC₇₁BM-based PSCs with different DIO additive concentrations under illumination of AM 1.5G, 100 mW/cm².

Table S3 Photovoltaic properties of the PBDTT-DTFPQx/PC71BM-based PSCs with

DIO additive concentrations	$J_{\rm sc}/~{\rm mA~cm^{-2}}$	$V_{ m oc}/~{ m V}$	FF/ %	PCE _{max} (PCE _{ave} ^a)/ %
0.0%	11.3	0.86	71	6.9 (6.6)
0.5%	11.7	0.86	71	7.1 (6.8)
1.0%	11.4	0.87	73	7.2 (7.0)
2.0%	11.1	0.87	58	5.6 (5.5)

different DIO additive concentrations under illumination of AM 1.5G, 100 mW/cm².

^{a)} The average PCE was obtained from over 10 devices.

Fig. S7 *J-V* curves of the PBDTT-DTFPQx/PC₇₁BM-based PSCs with different spincoating rates under illumination of AM 1.5G, 100 mW/cm².

Table S4 Photovoltaic properties of the PBDTT-DTFPQx/PC71BM-based PSCs with

spin-coating rates/ rpm	$J_{\rm sc}/~{ m mA~cm^{-2}}$	$V_{\rm oc}/~{ m V}$	FF/ %	PCE _{max} (PCE _{ave} ^a)/ %
2000	11.3	0.86	71	7.0 (6.7)
2250	11.4	0.87	73	7.2 (7.0)
2500	11.5	0.86	72	7.1 (6.9)

different spin-coating rates under illumination of AM 1.5G, 100 mW/cm².

^{a)} The average PCE was obtained from over 10 devices.

5. ¹HNMR, ¹³C NMR and MS data of monomer and ¹H NMR data of polymer

¹H NMR plot of **DTFPQx-Br₂**

¹³C NMR plot of **DTFPQx-Br₂**

MALDI-TOF plot of DTFPQx-Br₂

¹H NMR plot of **PBDTT-DTFPQx**

