Mourad Benlamri et al.

ELECTRONIC SUPPLEMENTARY INFORMATION

Low residual donor concentration and enhanced charge transport in low-cost electrodeposited ZnO

Mourad Benlamri,^a Samira Farsinezhad,^a Douglas W. Barlage^a and Karthik Shankar^{*ab}

^a Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, T6G 2V4, Canada

^b National Institute for Nanotechnology, National Research Council, 11421 Saskatchewan Drive, Edmonton, AB, T6G 2M9

1. Field-emission scanning electron microscope (FESEM) images of a cleaved Cu/ZnO sample:

Fig. S1: High magnification top-view FESEM image of a cleaved ZnO/Cu sample showing film morphology.

Fig. S2: Cross-sectional FESEM image of a cleaved ZnO/Cu sample showing columnar grain shapes.

2. Optical absorption and photoluminescence spectra of Cu/ZnO films

Fig. S3: Optical spectra were measured by the spectrophotometry technique for two samples: $n-Si/SiO_2/TiW/Cu$ (black line) and $n-Si/SiO_2/TiW/Cu/ZnO$ (red line). The thickness of the electrodeposited ZnO film is ~ 6.9 µm as measured by cross-sectional FESEM.

Fig. S4: Room temperature photoluminescence spectra from two samples: n-Si/SiO₂/TiW/Cu (black line) and n-Si/SiO₂/TiW/Cu/ZnO (red line), were measured for an excitation wavelength of 345 nm.