Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Wetting Properties and SERS Applications of ZnO/Ag Nanowire Arrays Patterned by Screen-Printing Method

Shuyuan Cui^{1, #}, Zhigao Dai^{1, 2, #}, Qingyong Tian², Jun Liu², Xiangheng Xiao², Changzhong Jiang², Wei Wu^{1, *}, and Vellaisamv A.L. Rov^{3,*}

¹ Laboratory of Printable Functional Nanomaterials and Printed Electronics, School of Printing and

Packaging, Wuhan University, Wuhan 430072, P. R. China

² Department of Physics, Hubei Nuclear Solid Physics Key Laboratory and Center for Ion Beam

Application, Wuhan University, Wuhan 430072, China

³ Department of Physics and Materials Science, City University of Hong Kong, Kowloon Tong,

Hong Kong SAR

These authors contributed equally

^{*} To whom correspondence should be addressed. Tel: +86-27-68778529. Fax: +86-27-68778433. E-mail: weiwu@whu.edu.cn (W. Wu), and val.roy@cityu.edu.hk (V.A.L. Roy).

Fig. S1 The TEM image of ZnO NPs, the insert are the photograph of ZnO NPs and alcohol dispersion system and the corresponding histogram of particle size distributions (a); the HRTEM image of ZnO NPs (b).

Fig. S2 XRD pattern of ZnO NPs (curve a) and the as-obtained ZnO Nanowires (curve b), together with standard JCPDS card (36-1451, pink lines, a); XPS wide survey spectra of ZnO Nanowires obtained by hydrothermal method (b); and XPS spectra of the zinc Zn 2p peaks (c) and oxygen O 1s peaks (d).

Fig. S3 The SEM images of ZnO/Ag NWs arrays prepared on PET with a sputtering duration of 3 min (a), 6 min (b), 9 min (c) and 15 min (d); and the insets show their corresponding cross-sectional SEM images, respectively.

Fig. S4 The SERS spectra collected on ZnO/Ag NWs arrays prepared on PET with different sputtering durations (3 min, 6 min, 9 min, 12 min and 15 min) after being immersed in 10⁻⁵ M MG solution.

Fig. S5 The SERS spectra of R6G collected on the ZnO/Ag NWs arrays prepared on PET with a sputtering duration of 9 min, which was exposed to different R6G concentrations (from 10⁻⁶ to 10⁻¹⁰ M, left); right, the enlarged SERS spectra of R6G collected on the above substrate exposed to 10⁻⁹ and 10⁻¹⁰ R6G solution, and the Raman spectra of R6G collected on the patterned ZnO NWs arrays prepared on PET without Ag sputtering exposed to 10⁻¹ M R6G solution.

Fig. S6 Two Raman mappings of randomly selected areas on 3D ZnO/Ag-9 substrates on Si and PET, respectively.

Table S1 Reported detection limits and enhancement factors on some noble metal/semiconductor

substrate	Raman molecules	detection limit	enhancement factor	Ref.
Ag NPs decorated TiO ₂ NRs	MG	10-12	4.36×10 ⁵	1
Ag NCs on ZnO NDAs	MG	10-17	1×10 ⁶	2
Ag- decorated ZnO NPAs	R6G	10-7	1×10 ⁶	3
Au Semishells decorated TiO ₂ Sphere arrays	R6G	-	1.4×10 ⁵	4
Screen printed Ag NPs	R6G	10-12	4.4×10 ⁶	5
Screen printed Au–Ag bimetallic microfluidic	R6G	1.1×10 ⁻¹³	4.4×10 ⁶	6
ZnO/Ag NWAs patterned by screen-printing	MG	10-12	2.5×10 ¹⁰	this study
	R6G	10 ⁻¹⁰	1.6×10 ⁷	

and printed SERS substrates

NR: nanorod, NC: anocluster, NDA: nanodome array, NPA: nanoplate array, NSA: nanosphere array, NWA: nanowire array

Reference:

[1] E. Z. Tan, P. G. Yin, T. T. You, H. Wang and L. Guo, ACS Appl. Mater. Interfaces, 2012, 4,

3432.

[2] K. Sivashanmugan, J. D. Liao, B. H. Liu, C. K. Yao and S. C. Luo, Sens. Actuators B: Chem.,

2015, **207**, 430.

[3] K. Liu, D. Li, R. Li, Q. Wang, S. Pan, W. Peng and M. Chen, J. Mater. Res., 2013, 28, 3374.

[4] X. Li, H. Hu, D. Li, Z. Shen, Q. Xiong, S. Li and H. J. Fan, ACS Appl. Mater. Interfaces, 2012, 4, 2180.

[5] L. L. Qu, D. W. Li, J. Q. Xue, W. L. Zhai, J. S. Fossey and Y. T. Long, *Lab. Chip*, 2012, 12, 876.

[6] L. L. Qu, Q. X. Song, Y. T. Li, M. P. Peng, D. W. Li, L. X. Chen, J. S. Fossey and Y. T. Long,

Anal. Chim. Acta, 2013, 792, 86.