Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Information

Experimental

Methods and instrumentation

ESI mass spectrometry was performed with Thermo Electron Corporation Finnigan LTQ. ¹H-NMR and ¹⁹F-NMR spectra were recorded on a JOEL JNM-ECA600 NMR spectrometer. Single-crystal Xray characterization was performed on a Bruker SMART APEX charge-coupled device (CCD) diffractometer equipped with graphite monochromatized Mo K_{α} radiation. The absorption and photoluminescence (PL) spectra were performed with a UV-vis spectrophotometer (Agilent 8453) and a fluorospectrophotometer (Jobin Yvon, FluoroMax-3), respectively. The excited state lifetimes were measured on a transient spectrofluorimeter (Edinburgh Instruments, FLSP920) with time-correlated single-photon counting technique at the peak emitting wavelength. Photoluminescent quantum yields (PLQYs) in degassed acetonitrile solution (1×10⁻⁵ M) were calculated with $[Ru(bpy)_3]Cl_2$ ($\varphi = 4.0$ % in non-degassed water) as the reference. PLQYs in neat film were measured at the excitation wavelength of 400 nm, using a Quantaurus-QY C11347-11. Cyclic voltammetry was performed on a Princeton Applied Research potentiostat/ galvanostat model 283 voltammetric analyzer in degassed N,N-dimethyl formamide (DMF) solution (1×10⁻³ M) at a scan rate of 100 mV s⁻¹ with a platinum plate as the working electrode, a silver wire as the pseudo-reference electrode and a platinum wire as the counter electrode. The supporting electrolyte was tetrabutylammonium perchlorate (0.04 g mL⁻¹) and ferrocene was selected as the internal standard.

Device fabrication and characterization

OLEDs were fabricated on cleaned and ultraviolet-ozone-treated glass substrates precoated with an indium tin oxide (ITO) anode with a sheet resistance of ca. 20 Ω per sq. Then all the layers were fabricated in the vacuum chamber under a low pressure of about 1×10⁻⁴ Pa. The current density-voltage-luminance (*J-V-L*) characteristics of the devices were measured with Keithley 4200 semiconductor system, and EL spectra were collected with a Photo Research PR705 spectrophotometer in ambient atmosphere without further encapsulations.

Supplementary Scheme and Figures.

Scheme S1. Synthetic routes of the pop ligand, 1 and 2.

Figure S1. (a-b) Absorption and (c-d) photoluminescence spectra of **1** and **2** in acetonitrile solution (10⁻⁵ M) under UV irradiation (p_e = 500 W, λ = 365 nm).

Figure S2. Photoluminescence spectra of (a) **1** and (b) **2** in solid states under UV irradiation $(p_e = 500 \text{ W}, \lambda = 365 \text{ nm}).$

Figure S3. (a-b) Thermal gravimetric analysis (TGA) and (c-d) differential scanning calorimetry (DSC) curves of **1** and **2** under a dry nitrogen gas flow at a heating rate of 10 °C min⁻¹. First time heat the materials up to 290 °C (black square), then cool to room temperature (red circle), and second time heat up to 290 °C (blue triangle).

Figure S4. Cyclic voltammogram of (a) **1** and (b) **2** in degassed N, N-dimethyl formamide (DMF) solution (1×10^{-3} M). Potentials were recorded *versus* the ferrocenium/ ferrocence (Fc⁺/ Fc) couple.

Figure S5. ¹H NMR spectra of **1** in the pristine state and after sublimation.

Figure S6. ¹⁹F NMR spectra of **1** in the pristine state and after sublimation.

Figure S7. ¹H NMR spectra of **2** in the pristine state and after sublimation.

Figure S8. ¹⁹F NMR spectra of 2 in the pristine state and after sublimation.

